Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russia has potential to become the world’s leading wheat export nation

27.11.2014

IAMO scholars present their latest research findings

In the coming decades, the global demand for agricultural products will rise substantially. Russia has ample scope for increasing agricultural production because more than 40 million hectares of former cropland have been abandoned since the dissolution of the Soviet Union, and because grain yields remain much lower than the yields achieved elsewhere in conditions that are naturally comparable.


Set-aside land in Russia, Photo: Alexander Prishchepov

A new paper shows that Russia can substantially increase its wheat production and become the leading international exporter under conservative assumptions of yield increases and modest re-cultivation of its unused land resources.

Schierhorn, together with colleagues at the Leibniz Institute of Agricultural Development in Transition Economies (IAMO) and the University of Alberta, Canada, calibrated a crop growth model to simulate potential wheat yields for 28 key wheat growing areas in Russia between 1995 and 2006.

Optimizing fertilizer supply can raise average wheat yields by 1.2 to 3.0 t/ha, and combined with irrigation the yields could increase by as much as 1.8 to 4.6 t/ha. These results were recently published in the journal Environmental Research Letters.

Based on yield simulations and maps of abandoned cropland, the research team quantified the potential for Russia to increase its wheat production based on productivity increases and land expansion.

In the journal Global Food Security, the authors show that higher land productivity is the key for enlarging wheat production, whereas re-cultivation of the abandoned croplands will only generate minor production increases, when carbon costs resulting from re-cultivation are accounted for.

The researchers demonstrate that, under conservative scenarios of yield gap closure and the re-cultivation of the recently abandoned croplands, Russia could increase its wheat production by up to 32 million tons, or 62% above production in 2013, and become the world’s leading wheat exporter (for comparison, Germany harvested a total of 25 million tons of wheat in 2013). However, substantial investments in infrastructure, education and research as well as institutional and political reform are vital for attaining these production increases.

Further information

Schierhorn, F., Faramarzi, M., Prishchepov, A., Koch, F., Müller, D. (2014): Quantifying yield gaps in wheat production in Russia, Environmental Research Letters, Vol. 9, No. 8. (open access). http://iopscience.iop.org/1748-9326/9/8/084017

Schierhorn, F., Müller, D., Prishchepov, A., Faramarzi, M., Balmann, A. (in press): The potential of Russia to increase its wheat production through cropland expansion and intensification, Global Food Security (open access). http://www.sciencedirect.com/science/article/pii/S2211912414000479 

Photo downloads at: www.iamo.de/fileadmin/Presse/Pressefoto_Brachflaechen_in_Russland_Foto_Alexander_Prishchepov.JPG

About IAMO

The Leibniz Institute of Agricultural Development in Transition Economies (IAMO) analyzes economic, social and political processes of change in the agricultural and food sector, and in rural areas. The geographic focus covers the enlarging EU, transition regions of Central, Eastern and South Eastern Europe, as well as Central and Eastern Asia. IAMO works to enhance the understanding of institutional, structural and technological changes. Moreover, IAMO studies the resulting impacts on the agricultural and food sector as well as the living conditions of rural populations. The outcomes of our work are used to derive and analyze strategies and options for enterprises, agricultural markets and politics. Since its founding in 1994, IAMO has been part of the Leibniz Association, a German community of independent research institutes.

Academic contact

Florian Schierhorn
Department Structural Development of Farms and Rural Areas
Tel.: +49 345 2928-335
Fax: +49 345 2928-399
schierhorn@iamo.de

Media contact

Daniela Schimming
Public Relations
Tel.: +49 345 2928-330
Fax: +49 345 2928-499
presse@iamo.de
www.iamo.de  

Daniela Schimming | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>