Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoy Makes Sitting Duck Of Superbugs

05.12.2007
A DNA-based therapy could slash the development time of new drugs to combat antibiotic resistant superbugs.

Scientists from the John Innes Centre have proven that by taking a short stretch of DNA from a bacterium and delivering it with an existing antibiotic they can switch off antibiotic resistance.

Together with technology transfer company PBL, the scientists have launched a spin-out company, Procarta Biosystems Ltd, to develop the technology.

“The DNA sequence acts as a decoy, disrupting gene expression and blocking resistance”, said Dr Michael McArthur from JIC.

“We are putting genetic information directly into drugs. This is the first application of a DNA based therapy”.

The scientists have also patented a way of discovering decoys in bacteria without necessarily having to know the genes involved. This means they can develop effective new drugs against any bacterium within a couple of years and at a fraction of the normal cost.

The technology can give fresh patent life to existing antibiotics - when combined with a decoy they can be patented as a new drug.

This comes at a time when the number of new antibiotics receiving approval has dramatically declined. Faced with antibiotic resistance the pharmaceutical industry is unlikely to be able to deliver new products.

“Natural resistance will always be hot on the heels of a new antibiotic because they co-evolve”, said Dr McArthur. “Ours’ is not a traditional pharmaceutical approach and provides a completely new challenge to bacteria”.

The technology can also be used to improve the production of antibiotics by bacteria and to produce enzymes and other compounds using bacteria for use in industrial processes.

Many industrial processes are harsh and unsustainable, using petrochemicals, high temperatures and creating toxic by-products. In industrial biotechnology, also called “white biotechnology”, bacteria make medically and commercially important compounds biologically.

“By using bacteria, many industrial processes could be cleaned up”, said Dr McArthur.

The Procarta scientists found that the bacterium Streptomyces produces a particularly high yield of enzymes and proteins. Unusually, it can also secrete the proteins it produces so they do not have to be extracted.

“Streptomyces is the enzyme producing bacterium with bells and whistles, set to make a major contribution to a market already predicted to be worth £400 million by 2010”, said Dr McArthur.

We use the products of white biotechnology in our everyday lives. They contribute to ingredients in the food we eat, energy we use that has been generated with renewable biomass rather than fossil fuels, medicines we take, and everyday products such as detergents, paint and paper.

Zoe Dunford | alfa
Further information:
http://www.jic.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New research recovers nutrients from seafood process water
31.10.2018 | Chalmers University of Technology

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>