Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic modification a tool for making vegetables and fruit (even) healthier

09.02.2007
It is possible to improve the antioxidant action of tomatoes by a directed change in the production of flavonoids by means of genetic modification.

This has been shown in research by Elio Schijlen at Plant Research Internationa, part of Wageningen University and Research Centre in the Netherlands. Schijlen demonstrated that this approach enables tomatoes to produce larger amounts of specific flavonoids and to let tomatoes produce flavonoids they cannot produce by nature. On the basis of the research Schijlen obtained HIS his PhD-degree on Thursday 8 February at the University of Amsterdam.

The results of this research show that genetic modification is a possible approach to further increase the health promoting value of vegetables and fruit. Flavonoids are frequently occurring and important metabolites in plants. About 6000 different flavonoids are known to be involved in various natural processes. The colour of flowers and ripe fruits, e.g., are often caused by flavonoids. But flavonoids also play an important role in other plant processes such as pollen production, disease resistance, and protection against UV radiation.

Because flavonoids are so frequently occurring in plants, they are a permanent component of our food. Part of the health promoting effects of vegetables and fruit is attributed to flavonoids. It may therefore be attractive to increase the amount of flavonoids and/or change their composition.

This was why Schijlen, working at Plant Research International of Wageningen UR, studied the possibilities of steering the production of flavonoids by a directed change of the biosynthesis route via genetic modification. He followed various approaches to achieve this. One approach was to investigate the possibility of increasing the amount of flavonoids in tomato by means of so-called transcription factors, proteins involved in regulating gene activity.

Schijlen also investigated the possibility to produce new flavonoids in tomatoes which might increase the health promoting properties of tomatoes. For this purpose he used genes form other crops such as grape and alfalfa, genes that are involved in certain steps in the biosynthesis of flavonoids in these crops.

Both approaches were found to be successful. Through genetic modification Schijlen succeeded in developing tomatoes not only with more flavonoids but also with new flavonoids.

Via biochemical analysis Schijlen demonstrated an increased antioxidant action of tomatoes with flavones and more flavonoles, two specific groups of flavonoids. In cooperation with scientists of BASF Plant Science and TNO, the potential health promoting effects of these tomatoes were tested in feeding studies with mice. Blood analyses showed that that the tomatoes with increased flavonoids had a stronger positive effect on blood properties that are characteristic of a reduced risk of cardiovascular disorders.

With his results, Schijlen has shown that genetic modification can further increase the health promoting effects of vegetables and fruit.

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>