Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experiments with fruit quality improvement lead to new approach for halting spread of cancer cells

05.07.2006
Experimental work aimed at improving the quality of fruit has led to the discovery by Hebrew University of Jerusalem agricultural researchers of a promising new avenue of drug treatment for halting the growth and spread of cancer cells in animals and humans.

Their approach has been shown to inhibit the malignant cells without affecting normal cells and without the severe side effects of traditional treatments such as radiation and chemotherapy. The strategy involves isolating the malignant tumor from its nutritional and oxygen supplies, thereby halting its growth and stopping metastases (spread of cancer cells to other parts of the body).

The work on the project was carried out at the Hebrew University Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot by Prof. Oded Shoseyov, Dr. Levava Roiz, Dr. Patricia Smirnoff and Dr. Betty Schwartz. Their discoveries were published recently in the journal Cancer of the American Cancer Society.

The approach of the Hebrew University researchers is based on the actions of actibind, a protein that is produced by the black mold Aspergillus niger and that is a well-known microorganism used in bio and food technology. In plants, actibind binds actin, a major component of the intracellular structure in plants, interfering with the plants' pollen tubes and halting cell growth.

While the Hebrew University researchers were initially interested in the activity of actibind in connection with a horticultural project aimed at improving the quality of peaches and nectarines, an actibind-like protein, RNaseT2, was also subsequently found to bind actin in human and animal migrating cells, such as the cells that are responsible for new blood vessel formation (angiogenesis) in tumors.

By blocking the blood supply to the tumors, actibind halted the ability of malignant cells to move through the blood stream to form new metastases. A further plus is that actibind is not toxic to normal cells, thereby significantly minimizing the risk of side effects.

In laboratory experiments using cell cultures that originated from human colon cancer, breast cancer and melanoma, increasing the level of actibind was found to reduce the ability of these cells to form tumorogenic colonies. Further experimentation, with a variety of animal models, showed that the increased actibind inhibited the growth of colon cancer-derived tumors, metastases and blood vessel formation. These promising discoveries were detailed in the Cancer article.

The results shown in working with actibind led to a further development in the researchers' project. During the completion of the human genome project, the gene encoding for RNaseT2, the human actibind-like protein, was found on chromosome 6. The Hebrew University team used genetic engineering procedures to produce a recombinant RNaseT2 protein that showed an impressive anti-cancer potential. These results have raised broad interest in international scientific meetings and in business circles.

The fungal actibind and the human RNaseT2 represent the basis for a new class of drugs that could be used as a front-line therapy in the fight against cancer, say the researchers.

Jerry Barach | EurekAlert!
Further information:
http://www.huji.ac.il

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>