Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schizophrenic antifungal bacteria

17.05.2005


Dutch researcher Daniël van den Broek investigated bacteria which fight fungal infections in plants. Spontaneous variations in the phase of these bacteria reduce the anti-fungal protective function but increase the bacteria’s competitive advantage and with this their chances of survival.



Scientists worldwide are looking for biological alternatives to chemical pesticides in order to protect crops against pathogens. One of these is the use of bacteria which protect plants, for example, by producing antifungal substances. Daniël van den Broek investigated how to improve the reliability of crop protection methods that use these microorganisms.

Van den Broek studied Pseudomonas bacteria. The molecular biologist first of all isolated and described these bacteria, which are found in or on the roots of maize. Of the 214 strains isolated, 46 were found to suppress the growth of pathogenic fungi, for example those which cause black root rot. In total 43 of these 46 medicinal strains spontaneously switched between the two phases.


Van den Broek discovered that these switches were caused by the spontaneous mutation of certain genes. As these mutations are reversible, the bacteria can switch back and forth between the two phases. Spontaneous mutants no longer produced drugs against the fungi, but they grew faster than their fungal-controlling alter egos.

Competition

The phase variation mechanism in these so-called biocontrol bacteria is reversible. Therefore switching between the two phases enables the entire population to respond to changes more quickly. This is a clear competitive advantage. Stressful conditions result in a switch to the non-medicinal form, which increases the competitive and survival chances of the bacteria. If the balance between the medicinal and the non-medicinal forms tips too far the wrong way, the bacteria can no longer adequately control the fungal infections.

Although more than 100 crop protection products based on microorganisms are available throughout the world, bacteria are still not widely used in these as they are not reliable enough in the field situation. Research needs to come up with methods to improve the efficiency and reliability of the bacteria, for example, by controlling the phase. Furthermore the phenomenon of phase variation has a negative effect on industrial processes such as the production of vaccines or enzymes. A better understanding of this phenomenon could contribute to improvements in vaccine development.

Daniël van den Broek’s research was funded by Technology Foundation STW.

Dr Daniël van den Broek | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6B9D57_Eng

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>