Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for the captation of nutrients in plants- unknown to date

06.05.2005


Up to now it was thought that nutrients penetrated the interior of plant cells by means of substance-specific transporters. Nevertheless, researchers at the Agrobiotechnology Institute at the Public University of Navarra have shown that the nutrients (saccharose, amino-acids, etc.) penetrate the cells basically through an “endocitic”, mechanism similar to fagocitosis, and induced by saccharose. This finding, carried by the latest issue of the Japanese journal, Plant Cell Physiology, will enable the design of experiments aimed at enhancing vegetable species in the interest of humanity.



Researchers at the Institute have shown that, in the presence of saccharose (a substance produced in leaves to be subsequently distributed around the plant), the cells of the reserve organs - such as roots, tubers, seeds or fruits - “swallow up” nutrients in order to metabolise and store them. These “swallowed-up” substances are incorporated into micro-vesicles that end up pouring their contents into an internal compartment of a vegetable cell known as the vacuola. Once inside the vacuola, the substances or nutrients are broken up, stored and metabolised.

Two processes of captation


This discovery breaks with a fundamental dogma in basic plant science holding that all substances penetrate the interior of the cell through the participation of specific transporters present in the plasma membranes - a model implying that, if hundreds of substances enter vegetable cells and each substance has its specific transporter, or even if one transporter can recognise 3 or 4 different substances, an infinity of such transporters would be required.

The conclusion of this research is that, while not discarding the existence of specific transporters in plasma membranes, their number and relevance is considerably inferior to what has been believed to date. In the absence of saccharose, nutrients can penetrate the cell by means of transporters, but the amount entering through this mechanism is less than that incorporated via endocitosis.

Thus, the experiments carried out showed the existence of processes independent of nutrient captation: a saccharose penetration process independent of “endocitosis” and another dependent on “endocitosis” and which required approximately 90 minutes from the time the cell started to capture saccharose in order to start functioning. That is, for these first 90 minutes, the saccharose penetrates using the transporter mechanism while, parallely, the endocitosis phenomenon is activated to form microvesicles. Subsequently, the cell starts to capture huge quantities of saccharose through endocitosis.

The results of the research has shown, moreover, that only saccharose is capable of initiating endocitosis, given that, in the trials undertaken with substances similar to saccharose, such as glucose or fructose, the fact that none of these triggered the process could be confirmed.

Moreover, given that endocitosis is involved in the acquisition of substances for their subsequent conversion into "end products" (such as starch, oils, celluloses, etc.), basic knowledge of this mechanism provides great tips for the rational design of experiments aimed at enhancing vegetable species in the interest of humanity.

One of the great questions thrown up by the fact that saccharose pick-up is produced via endocitosis is, fundamentally, to find out if the saccharose captured through endocitosis is that involved in starch production. If this is the case, it will be necessary to discover what are the genetic and molecular mechanisms involved in the process, in order to improve the plant varieties. For example, in order to increase starch production in potato or maize, endocitosis would have to be encouraged through the stimulation of the genes involved in the formation of the vesicles – a hypothesis that is currently being verified.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>