Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research adds health benefit to tomatoes

20.02.2004


Researchers at Oregon State University have created purple-fruited tomatoes that include anthocyanins – the same class of health-promoting pigments in red wine that function as antioxidants and are believed to prevent heart disease.


Purple-fruited tomatoes that include anthocyanins, health-promoting pigments that function as antioxidants, created by researchers at Oregon State University.



Their research is featured as the cover story in the latest issue of the Journal of Heredity.

Domestic tomato varieties grown and consumed in the United States do not normally produce fruit containing any anthocyanin, explained Jim Myers, OSU’s Baggett Frazier professor of vegetable breeding. The success in producing anthocyanin-containing tomatoes – through traditional breeding techniques – could help researchers develop even more new varieties of tomatoes with other nutrients, both for home gardeners and for the food industry, he added.


"Tomatoes are second only to the potato in terms of the top vegetable consumed in the world," Myers said. "Per capita use in the U.S. in 2003 was 89 pounds of tomatoes per person. If we could boost the nutritional value of tomatoes, a large part of the population would benefit from that."

The OSU researchers accomplished the feat through the characterization of the inheritance pattern of a little studied gene in tomatoes called "anthocyanin fruit," or Aft. Myers and his OSU graduate students crossed a domestic tomato plant with a genetic stock of tomato that included a gene incorporated from a wild relative with anthocyanin-containing fruit and the Aft gene. The result: a domestic-type tomato fruit containing the purple pigment and the Aft gene, thereby opening the door towards developing anthocyanin-rich tomatoes.

Assisting Myers were graduate students Carl M. Jones, now at the University of California-Davis, and Peter Mes. The OSU researchers grew the seeds of their new cross of anthocyanin tomato fruit in the OSU research greenhouse for two generations, backcrossing them with the original parent types. This work led them to confirm that anthocyanin fruits are transmitted in tomatoes by a single dominant gene, Aft.

"We are learning about how anthocyanin genes are expressed in tomatoes, and how we might cross tomatoes to get more nutritional value," explained Myers.

Comparing chemical analyses of the tomatoes with the Aft gene to those without the gene, the OSU plant breeders determined the pigment composition of anthocyanin fruit gene, explained Myers. They also verified that indeed, having fruits containing anthocyanin could be inherited through a single gene, Aft.

Anthocyanins are the source of the blue, purple and red in berries, grapes and some other fruits and vegetables. These pigments also function as antioxidants, believed to protect the human body from oxidative damage that may lead to heart disease, cancer and aging, explained Mes.

Working with Myers on his doctoral research, Mes is breeding new crosses of tomatoes and analyzing the antioxidant activity of not only anthocyanins in the fruits, but also carotenoids, another class of beneficial phytonutrients. He is also conducting preliminary nutrition studies on humans that have consumed different types of his tomatoes as juice, to see how the various carotenoids are metabolized and which carotenoids prevent oxidation in human plasma.

Industry is interested in their work with higher nutrient tomatoes, say Mes and Myers.

"The medical, the nutritional and the food research industries all are keenly interested in the health benefits of phytochemicals in all sorts of fruits and vegetables," said Myers. "We are happy to find out we can accomplish this in tomatoes using traditional, classical plant breeding techniques."

For more than 40 years, OSU vegetable breeders W.A. Frazier, James Baggett and now Myers, the current OSU Baggett-Frazier Professor of Vegetable Breeding, have developed more than a dozen tomato varieties for commercial and home growers around the world.


###
By Carol Savonen, 541-737-3380
Source: Jim Myers, 541-737-3083

Jim Myers | Oregon State University
Further information:
http://oregonstate.edu/dept/ncs/newsarch/2004/Feb04/tomato.htm

More articles from Agricultural and Forestry Science:

nachricht Researchers double sorghum grain yield to improve food supply
31.10.2019 | Cold Spring Harbor Laboratory

nachricht Game changer: New chemical keeps plants plump
25.10.2019 | University of California - Riverside

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>