Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal chemical primes plants for pest attack

27.01.2004


Physically damaged or chewed plants produce a volatile chemical that may serve as a primer to prepare nearby plants to defend themselves against insect attack, according to a team of researchers.



"We know that when caterpillars chew on plants, eventually the plants produce chemicals attracting wasps that are the natural enemy of the caterpillar," says Dr. James H. Tumlinson, the Ralph O. Mumma endowed professor of entomology at Penn State. "Natural predators can be an effective method of biological control of pests in agriculture."

However, these predator attracting chemicals do not appear immediately. The first chemicals released are green leafy volatiles (GLV), the odor of new mown grass or crushed leaves. These are highly volatile and appear immediately so they are good candidates as signals to other plants.


To explore this, Tumlinson, working at the Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Fl., looked at how GLV influenced undamaged plants in the area by studying corn seedlings and beet army worm, a caterpillar that eats corn leaves as well as cotton, tobacco and other plants. The researchers exposed seedlings to GLV for an hour or overnight. They then tested the undamaged plants by either mechanically damaging them or mechanically damaging them and applying beet armyworm spit to the wounds.

"We discovered that . . . exposure to GLV primed corn plant defenses to respond more strongly against subsequent attack by herbivorous insects by increasing jasmonic acid biosynthesis and volatile organic compounds (VOC)," the researchers report in the current issue of the Proceedings of the National Academy of Science.

Jasmonic acid is a plant hormone that turns on plant defenses, including VOCs, which are the chemicals that attract the caterpillar’s parasites and predators. They usually do not appear until hours after the initial attack on the plant.

"The GLVs appear to be like a vaccine, turning on the defensive mechanism, but not pushing it to full strength," says Tumlinson. "If the plant is not attacked, then it does not waste energy producing defenses. However, if it is attacked, the response is more rapid and stronger."

The researchers found that the primed plants produced chemical signals that attract the natural parasites and predators in almost twice the amounts that unprimed plants do. Plants damaged only mechanically did not show this response. Those mechanically damaged and then treated with caterpillar spit to simulate caterpillar feeding showed the enhanced response.

"If you mechanically wound a plant, it is not the same as a caterpillar feeding on it," says Tumlinson. "Caterpillars elicit much greater response than just mechanical damage alone."

Researchers tested the GLV-exposed plants the day after exposure, but have not yet tested the plants after the first day. They therefore do not know if the priming response lasts longer than a day. If the response is long lived, then perhaps exposure to GLVs could protect fields in danger of becoming infested with beet armyworm or other leaf eating caterpillars. This natural chemical might someday reduce the use of pesticides and improve crop quality.

Tumlinson chose the corn and beet armyworm system because the Florida facility has raised beet armyworms for a long time, and corn seedlings can be ready for experimentation in a week or two, while other plants take up to a month to be suitable for use.

"We do not know for sure if the same mechanism will work on other crops like cotton and tobacco," he adds. "It might not have exactly the same effect."

Experiments have not been done on cotton, tobacco or other crops, so it is unclear if this vaccination would work on those or all crops, but the potential for a natural preventive method of pest control exists.

The researchers included Tumlinson; Juergen Engelberth, postdoctoral fellow at Penn State; and Eric A. Schmelz, research scientist; and Hans T. Alborn, postdoctoral fellow at the Center for Medical, Agricultural and Veterinary Entomology.

A’ndrea Elyse Messer | Penn State
Further information:
http://live.psu.edu/story/5384

More articles from Agricultural and Forestry Science:

nachricht Studies show integrated strategies work best for buffelgrass control
12.12.2019 | Cambridge University Press

nachricht The tips of a plant design its whole shape
09.12.2019 | Eberhard Karls Universität Tübingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>