Evaluation of the factors controlling nitrogen oxide emissions in meadowlands

Agriculture is responsible for 8% of the total emissions of greenhouse effect gases and so, given the EU adhesion to the 1997 Kyoto protocol, it is obliged to assume a certain percentage in the reduction of these emissions. 41% of nitrous oxide (N2O) emissions of human origin in Europe comes from agriculture. The soil, through microbic processes of nitrification and denitrification, is deemed to be mainly responsible for these N2O emissions, contributing to NO emissions also.

Meadowlands form a system with a high potential for the emission of these gases, given their high quantity of organic material and the high levels of fertilisation to which intensive agriculture subjects them. In this study the following factors in N2O and NO emission in meadowlands have been investigated: fertilisation, the water content in the soil, tillage and the use of nitrification inhibitors.

The results obtained indicate that the clay soils studied in the Basque Country show a high level of nitrification. As a consequence, the Nitrogen from applications of organic residues is quickly transformed into a mineral Nitrogen which is susceptible to loss to the atmosphere in the form of oxides of Nitrogen and mainly as a consequence of nitrification. The addition of inhibitors of nitrification is a recommended practice for this type of fertiliser. The N2O emissions derived from mineral fertilisation with ammmonium calcium nitrate are mainly produced through desnitrification, and it is therefore recommended to adjust the mineral fertiliser rather than have to use it in conjunction with DCD. Practices like tillage have a negative effect, provoking N2O and NO emissions even over and above the levels recorded in highly fertilised but untilled areas. Given that it is common practice to dig up a field for the cultivation of forage maize, tillage using nitrogen-based fertilisation should be well-spaced so as to avoid high NO and N2O emissions

Media Contact

Pilar Merino Pereda Basque research

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors