Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water: The forgotten crisis

14.07.2008
How do we find more water to feed a growing population?

This year, the world and, in particular, developing countries and the poor have been hit by both food and energy crises. As a consequence, prices for many staple foods have risen by up to 100%. When we examine the causes of the food crisis, a growing population, changes in trade patterns, urbanization, dietary changes, biofuel production, and climate change and regional droughts are all responsible.

Thus we have a classic increase in prices due to high demand and low supply. However, few commentators specifically mention the declining availability of water that is needed to grow irrigated and rainfed crops. According to some, the often mooted solution to the food crisis lies in plant breeding that produces the ultimate high yielding, low water- consuming crops. While this solution is important, it will fail unless attention is paid to where the water for all food, fibre and energy crops is going to come from.

A few years ago, IWMI (the International Water Management Institute) demonstrated that many countries are facing severe water scarcity, either as a result of a lack of available fresh water, or due to a lack of investment in water infrastructure such as dams and reservoirs. What makes matters worse is that this scarcity predominantly affects developing countries where the majority of the world's under-nourished people-- approximately 840 million -- live.

The causes of water scarcity are essentially identical to those of the food crisis. There are serious and extremely worrying factors that indicate water supplies are steadily being used up. Essentially every calorie of food requires a liter of water to produce it. Thus those of us on western diets, use about 2500-3000 liters per day. A further 2.5 billion people by 2030 will mean that we have to find over 2000 more cubic kilometers of fresh water to feed them. This is not any easy task given that current water usage for food production is 7500 cubic kilometers and supplies are scarce. According to the recent report "Water for Food, Water for Life" of the Comprehensive Assessment of Water Management in Agriculture, which drew on the work of 700 scientists, unless we change the way we use water and increase "water productivity" (i.e. more crop per drop) we will not have enough water to feed the world's growing population (This population is estimated to increase from 6 billion now to about 8.5 billion in 25 years.) Compared with the lengthy agenda to combat climate change, this is a very short time indeed and yet the impacts of water scarcity will be profound. However, very little is being done about it in most countries.

Since the formulation of the UN Millennium Goals in 2002, much of the water agenda has been focused around the provision of drinking water and sanitation. This water comes from the same sources as agricultural water and as we urbanize and improve living standards there will be increasing competition for drinking water from domestic and other urban users, putting agriculture under further pressure. While improving drinking water and sanitation is vital with respect to health and living standards, we cannot afford to neglect the provision and improved productivity of water for agriculture.

There are potential solutions. Better water storage has to be considered. Ethiopia, which is typical of many sub-Saharan African countries, has a water storage capacity of 38 cubic meters per person. Australia has almost 5000 cubic meters per person, an amount that in the face of current climate change impacts may be inadequate. While there will be a need for new large and medium-sized dams to deal with this critical lack of storage in Africa, other simpler solutions are also part of the equation. These include the construction of small reservoirs, sustainable use of groundwater systems including artificial groundwater recharge and rainwater harvesting for smallholder vegetable gardens. Improved year- round access to water will help farmers maintain their own food security using simple supplementary irrigation techniques. The redesign of both the physical and institutional arrangements of some large and often dysfunctional irrigation schemes will also bring the required productivity increases. Safe, risk free reuse of wastewater from growing cities will also be needed. Of course these actions need to be paralleled by development of drought- tolerant crops, and the provision of infrastructure and facilities to get fresh food to markets.

Current estimates indicate that we will not have enough water to feed ourselves in 25 years time, by when the current food crisis may turn into a perpetual crisis. Just as in other areas of agricultural research and development, investment in the provision and better management of water resources has declined steadily since the green revolution. I and my water science colleagues are raising a warning flag that significant investment in both R&D and water infrastructure development are needed, if dire consequences are to be avoided.

Dawn Rodriguez | EurekAlert!
Further information:
http://www.cgiar.org
http://www.iwmi.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>