Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wageningen scientist discovers genes that increase yield on marginal soils

13.03.2008
Genetically modified plants can be developed that perform significantly better than existing varieties in dry and saline soils. This is the conclusion of the doctorate thesis, to be defended by Shital Dixit at Wageningen University on March 14. Dixit discovered genes that radically enhance the seed production of rice and Arabidopsis plants in dry and saline conditions. This is a major breakthrough considering the rising demands for food and the effects of climate change.

The constantly rising world population and the changing climate will make it essential in the future to cultivate crops in soils where current varieties are unproductive. These so-called marginal soils are often too dry or contain too much salt for cultivation. There are many such areas around the world that are currently not being used for food production, and climate change will lead to huge increases in marginal soils.

Varieties that are less susceptible to drought and/or salt might make it possible to grow crops in marginal soils. Within plant biology, there are mechanisms known which allow plants to protect themselves against the a biotic stress caused by a lack of water or excessive salt. Using the genes which set these mechanisms into action and genetic modification, varieties can be developed which make the most of these mechanisms and are therefore resistant to drought and salt.

Shital Dixit studied the so-called 'HARDY' gene, found in a collection of Arabidopsis mutants in which certain jumping genes increase the activity of genes. Via genetic modification, Dixit developed Arabidopsis plants in which the HARDY gene was more active. She discovered that these genetically modified plants grew better under drought stress than ordinary Arabidopsis plants. The 'HARDY plants' used water more efficiently than normal plants. During desiccation of the soil, the plants were found to vaporise considerably less water while maintaining their growth. When the soil was dry, the HARDY plants lived on and recovered after being given water. They also proved to be resistant against high saline concentrations in the soil.

By means of genetic modification, Dixit managed to transfer the HARDY gene to rice. The HARDY rice plants also turned out to be tolerant to both drought and salt. To Dixit’s surprise, these improved rice plants also performed at least as well in optimal cultivation conditions as ordinary rice plants. The general rule in plant biology is that plants with increased stress tolerance perform worse in optimal conditions than plants without tolerance. This makes the HARDY system even more promising in practical applications.

The HARDY gene encodes for a so-called transcription factor, meaning that a whole chain of genes is regulated. A plant can therefore turn an entire drought or salt tolerance mechanism on or off with a single switch. Dixit also discovered that the SHINE gene, which also encodes for a transcription factor, is capable of making rice tolerant to salt as well.

In her research, Dixit showed how a large group of plants with mutations that cause genes to be more active can be valuable for tracking genes that increase stress tolerance. Dixit selected two mutants from one of these plant groups, which after more detailed research proved to use water more efficiently and to have a tolerance for higher saline concentrations.

Dixit performed her research at Plant Research International (Wageningen UR). It was financed by the WOTRO programme of The Netherlands Organisation for Scientific Research (NWO).

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Plant Hormone Makes Space Farming a Possibility
17.10.2018 | Universität Zürich

nachricht Goldilocks principle in biology -- fine-tuning the 'just right' signal load
15.10.2018 | Aarhus University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>