Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide: definitely no laughing matter

19.02.2008
Farmers, food suppliers, policy-makers, business leaders and environmentalists are joining forces to confront the threat of the ‘forgotten greenhouse gas’ by taking part in an influential new forum at the University of East Anglia (UEA).

Launched on February 22, the Nitrous Oxide Focus Group will engage with many influential organisations including the National Farmers Union, Marks & Spencer, British Sugar, Defra, the Country Land and Business Association and Unilever.

The group will present and explore cutting edge research into the sources and sinks of nitrous oxide in the environment and discuss the prospects of mitigating the release of this destructive gas through re-shaping current policies and practice.

“People are becoming increasingly concerned about the immense problems associated with the unregulated release of this potent greenhouse gas,” said Prof David Richardson, Dean of the Faculty of Science at UEA and co-ordinator of the Nitrous Oxide Focus Group.

“It is very encouraging that so many key figures from agriculture, industry and government are interested in mitigating nitrous oxide emissions by learning more about key research questions that are currently being addressed with government funding by groups within UEA, along with collaborating research groups across the UK and Europe.”

Better known as ‘laughing gas’, nitrous oxide (N2O) accounts for 9 per cent of all greenhouse gases, yet is 300 times more potent than carbon dioxide (CO2). As a result its longevity in the atmosphere provides a potentially more damaging legacy than CO2.

Agriculture accounts for around 70 per cent of N2O emissions. The sources are mainly from soil micro-organisms that make N2O from nitrogen-rich fertilisers added to soils to maximise crop yields. Other significant biological sources of N2O come from the wastewater treatment industries where the greenhouse gas is again produced from micro-organisms.

The launch of the new consortium is underpinned by more than five years of interdisciplinary research at UEA and comes as significant new research on an N2O-generating enzyme from a widespread soil bacterium is published.

The research was done in collaboration with the University of Stockholm and largely carried out by UEA graduate Faye Thorndycroft under the guidance of Prof Richardson and Dr Nick Watmough.

Press Office | alfa
Further information:
http://www.uea.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Back to Nature: Palm oil plantations are being turned back into protected rainforest
21.03.2019 | Forschungsverbund Berlin e.V.

nachricht The inner struggle of the evening primrose: Chloroplasts are caught up in an evolutionary arms race
14.03.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>