Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New rice fights off drought

04.04.2017

Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations. Published in Plant Biotechnology Journal, the study reports that transgenic rice modified with a gene from the Arabidopsis plant yield more rice than unmodified rice when subjected to stress brought by natural drought. The study was carried out in collaboration with researchers from the International Center for Tropical Agriculture (CIAT) in Colombia and the Japanese International Research Center for Agricultural Sciences (JIRCAS) in Japan.

As the amount of rice needed to help feed the global population increases, the consequences of drought-related crop reduction are becoming more severe. RIKEN scientists and their collaborators tackled this issue by developing transgenic strains of rice that are more resistant to drought.


Ubi: AtGolS2 improved Curinga grain yield in the target environment. Field performance of unmodified Curinga rice (left) and promising transgenic strain 2580 (right). Photographs were taken during stress at the grain filling stage.

Credit: RIKEN and CIAT

Normally, plants adapt to drought-related stress by producing osmoprotectants -- molecules like soluble sugars that help prevent water from leaving cells. Galactinol synthase (GolS) is an enzyme needed to produce one these important sugars called galactinol. In previous work, RIKEN scientists showed that Arabidopsis plants express the AtGolS2 gene in response to drought and salinity stress.

"The Arabidopsis GolS2 gene was first identified with basic research at RIKEN," explains RIKEN scientist Fuminori Takahashi. "Using it, we were able to improve resistance to drought-related stress, and increased the grain yield of rice in dry field conditions. This is one of the best model cases in which basic research knowledge has been successfully applied toward researching a resolution to a food-related problem."

For this study, they created several lines of transgenic Brazilian and African rice that overexpress this gene, and with their CIAT and JIRCAS collaborators, tested how well the rice grew in different conditions in different years.

The results were very promising. First, they grew the different rice lines in greenhouse conditions and showed that the modified Brazilian and African rice did indeed show higher levels of galactinol than the unmodified control rice. Next, they tested tolerance to drought during the seedling growth period because this period often overlaps with seasonal drought. In order to precisely control this part of the experiment, it was conducted in a rainout shelter that allowed them to artificially create drought-like conditions. After three weeks, the modified strains had grown taller and showed less leaf-rolling, a common response to drought stress.

Drought tolerance was next confirmed at the reproductive stage in three rainout field trials in Colombia. These trials were during different seasons and different locations. Nevertheless, transgenic lines in both species of rice showed higher yield, greater biomass, lower leaf-rolling, and greater fertility than the unmodified rice. Closer examination showed that five of the most promising strains had greater relative water content during drought conditions, and also used more light for photosynthesis, and contained more chlorophyll.

Finally, they tested the transgenic rice over a three-year period in different natural environments. Again, several of the transgenic strains showed higher grain yield under mild and severe natural drought.

When might we see this useful rice on the market? According to Takahashi, the greatest barrier to commercial availability is that they used genetically modified (GM) technology to generate the GolS2 transgenic rice. "Now, we have begun our next collaborative project, in which we will generate useful rice without GM technology. It might take 5-10 years to reach our goal, but we must keep pressing forward because droughts and climate change might get worse in the future."

###

Reference: Selvaraj M, Ishizaki T, Valencia MO, Ogawa S, Dedicova B, Ogata T, Yoshikawa K, Maruyama K, Kusano M, Saito K, Takahashi F, Shinozaki K, Nakashima K, Ishitani M. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnology Journal. doi: 10.1111/pbi.12731.

Adam Phillips | EurekAlert!

Further reports about: Arabidopsis Galactinol synthase RIKEN transgenic transgenic rice

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>