Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into why Pierce's disease is so deadly to grapevines

11.06.2018

Research could help diagnose disease early and increase plant health

Scientists are gaining a better understanding of Pierce's disease and how it affects grapevines. The disease, which annually costs California more than $100 million, comes from a bacterium called Xylella fastidiosa. While the bacterium has been present in the state for more than 100 years, Pierce's disease became a more serious threat to agriculture with the arrival of the glassy-winged sharpshooter insect, which can carry the bacterium from plant to plant.


This is symptoms of Pierce's disease on a grapevine leaf.

Credit: University of California

In a new study, published in Frontiers in Plant Science, researchers at the University of California, Davis, have identified a set of molecular markers that influence the onset of Pierce's disease in grapevines.

"We now have a very good idea of the plant responses to the disease," said lead author Paulo Zaini, a postdoctoral researcher in the Department of Plant Sciences at UC Davis. "This will help us in early diagnosis and help us design strategies to protect the plant from damaging itself."

HOW INFECTION DEVELOPS

The glassy-winged sharpshooter injects the Xylella fastidiosa bacterium into the plant's xylem, which is the part of the plant that carries water. The disease causes leaves to yellow or "scorch," eventually drying up and dropping from the vine. It can kill a plant in three to five years. Few diseases can kill grapevines so quickly.

The glassy-winged sharpshooter was first reported in California in 1994 and can travel greater distances than native sharpshooters. By 2002, the glassy-winged sharpshooter had infested more than 1,100 acres of grapevines statewide.

"What growers do to stop the bug is just apply insecticides at an increasingly growing rate," said Zaini. "It's not a sustainable strategy."

In this study the authors looked at the plant's responses to the disease compared to healthy plants. Better understanding the biochemical changes with onset of the disease can help foster new strategies to increase plant health, rather than having to use insecticides to fight disease.

Scientists have long thought the bacteria growing in the xylem blocked the flow of water to the leaves.

"We thought that the blockage causes a drought stress, but there's much more to it than that." said Abhaya Dandekar, professor of plant sciences and the study's principal investigator. "Not all the vessels are blocked."

The blockage might be part of the problem, but it doesn't answer all the questions. More than 200 plant species harbor the bacterium but are asymptomatic.

Having identified molecular markers important for Pierce's disease in grapevines, researchers can use them to study grapevine varieties or other plants that do not develop disease.

###

Co-authors include Hossein Gouran, Sandeep Chakraborty, and My Phu with the UC Davis Department of Plant Sciences; Dario Cantu with the UC Davis Department of Viticulture and Enology; and Rafael Nascimento and Luiz Goulart with the Institute of Genetics and Biochemistry at the Federal University of Uberlandia in Brazil.

The study was funded by the California Department of Food and Agriculture Pierce's Disease Board and CAPES, a Brazilian scientific research funding agency.

Media Contact

Amy Quinton
amquinton@ucdavis.edu
530-752-9843

 @ucdavisnews

http://www.ucdavis.edu 

Amy Quinton | EurekAlert!
Further information:
https://www.ucdavis.edu/news/new-insight-why-pierce%E2%80%99s-disease-so-deadly-grapevines
http://dx.doi.org/10.3389/fpls.2018.00771

More articles from Agricultural and Forestry Science:

nachricht Trees and climate change: Faster growth, lighter wood
14.08.2018 | Technische Universität München

nachricht Animals and fungi enhance the performance of forests
01.08.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>