Finding ways to feed pigs for less

Less expensive feed is usually higher in fiber than the corn-soy diets typically used in U.S. swine production, explained Hans H. Stein, professor of animal sciences at the University of Illinois at Urbana-Champaign.

However, the white breeds that are used in commercial pork production use only about 40 percent of the insoluble fiber. “If you can increase that number to 50 or 60 or 70 percent, then of course, you would get a much better use of the energy in those ingredients,” Stein explained.

“The white breeds have been selected for high efficiency and rapid gain for many, many generations,” Stein continued. “But that's all based on corn-soy diets. However, there are also indigenous breeds of pigs that have not been selected for commercial production, and these breeds have, therefore, not been fed the corn-soybean meal diets for as many generations as the white breeds.”

Among those indigenous breeds are Meishan pigs, which have been raised in China for many centuries. Stein's hypothesis was that these pigs, which have not been selected for efficiency and rapid weight gain, would use fiber more efficiently than the white breeds.

Stein and his team compared the fiber digestion of Meishan pigs with that of two groups of Yorkshire pigs. They tested four diets that used high-fiber ingredients: distillers dried grains with solubles (DDGS), soybean hulls, sugar beet pulp, and pectin. When fed DDGS, the values for apparent total tract energy digestibility were higher for the Meishan pigs (83.5%) than for either weight-matched (77.3%) or age-matched (78.8%) Yorkshire pigs. Researchers observed no significant difference in energy digestibility for the other ingredients.

“What we observed was that, particularly for the DDGS diets, the Meishans were quite a bit more effective at using that fiber,” Stein said. “That diet is high in insoluble dietary fiber. When we looked at more soluble fibers, there was no difference.”

Although Meishan pigs would never be used for commercial pork production in the United States, the results indicate that differences exist among breeds of pigs. Thus, it is possible that differences also exist among the white breeds and that some may use fibers more efficiently than others.

Stein stressed that this study was preliminary and said that determining if white breeds can be bred to use insoluble fiber more efficiently will be quite costly because it requires selecting pigs for multiple generations. Stein said that he and colleagues at the University of Illinois' Institute for Genomic Biology are pursuing funding for further research.

“I think it is exciting that there are some pigs that can use fiber better than we have thought in the past, and I think this will open up opportunities to think in different ways about how we can feed pigs economically,” he said.

The study was published in a recent issue of the Journal of Animal Science and was co-authored with former graduate student Pedro Urriola.

News writer: Susan Jongeneel
phone: (217) 333-3291; email: sjongene@illinois.edu

Media Contact

Susan Jongeneel EurekAlert!

More Information:

http://www.illinois.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors