Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extracts from cashew nut shell can be used against termites

14.04.2009
The extract from kasoy shell, a recent study revealed, can be potentially used against termites. This is according to findings made by a multi-disciplinary research team from the Institute of Chemistry-CAS and Department of Forest Products and Paper Science-CFNR at the University of the Philippines Los Baños (UPLB).

Technically termed cashew nut shell liquid or CNSL, the extract and its derivatives were tested for activity against the Philippine milk termite. With the good results shown, indeed, the kasoy can add another item to its long list of uses.

Cashew, a tree of chemicals

Cashew (Anacardium occidentale L.), even though mainly raised in the backyard or as a secondary crop, is among the important nut crops in the Philippines. Scientific literature all over the world reveal a multitude of uses for the tree.

The chemical components from the nut alone would be enough product bases for a multinational chemical company. Take these for example ¯resins, automotive brake linings, heatproof and waterproof paint, corrosion-resistant varnish and insulating enamels. Meanwhile, there have been reports of CNSL having properties against insects, molluscs, fungi, and microbes. To top it all, the extract can also be used for medical purposes.

Termites, the target pest

Because CNSL is a natural product, it can be a non-synthetic option for pest management. That is why the research group, composed of Mr. Edison G. Boongaling, Dr. Hidelisa P. Hernandez, Dr. Ernesto J. del Rosario (IC-CAS) and Dr. Menandro N. Acda (DFPPS-CFNR) thought of using CNSL to control the subterranean pest Philippine Milk Termite.

Scientifically known as Coptotermes vastator, the Philippine milk termite is a major structural pest of timber and wood products in the country. In UPLB alone, so much damage have been brought to buildings and facilities by this pest that the administration has set up and funded a special termite control program.

Extracting and preparing CNSL

CNSL is a viscous, reddish brown liquid obtained via a number of ways. It can be derived by hot oil extraction, roasting at high temperatures and mechanical extraction.

The group air-dried cashew nut shells for two weeks and the crude CNSL was expelled using a press. After filtration, chemical evaluation and thin layer chromatography was done. From the crude CNSL, the group isolated and prepared the following components: anacardic acid, cardanol, and methyl anacardate.

Termite bioassay results

C. vastator termites from various colonies found inside the campus were collected and immediately given an artificial environment inside the laboratory. Within an hour of collection, the termites were subjected to two bioassays: contact toxicity and 'no choice feeding'.

In contact toxicity, loamy soil was treated with CNSL solutions of 0.1, 1, 10 and 100 percent concentrations. The termites were placed inside petri dishes in controlled conditions for two weeks. The 'no choice' feeding bioassay was performed on the other hand to see if the CNSL and its anacardic acid, cardanol, and methyl anacardate components can kill termites when ingested. Solutions also of 0.1, 1, 10 and 100 percent concentrations were applied to filter paper served as food for the termites for two weeks.

Results showed that the natural CNSL was toxic to termites. It controls termites from tunneling into the soil, and at only 10% concentration, the CNSL was able to kill all C. vastator termites within a day.

On the other hand, it was observed that the CNSL was not potent by ingestion but had an anti-feeding effect on the termites. Meanwhile, using the individual anacardic acid, cardanol, and methyl anacardate components of the CNSL killed termites at a high rate even at only 0.1% concentration.

Possible products out of CNSL

The research team was optimistic that their study could pave the way for commercial exploitation of the kasoy derivative as termiticide. Since CNSL is environment-friendly, it would be a viable alternative to chemical insecticides which persist in the soil after application.

There may be a number of forms to package CNSL into products. CNSL and its derivatives may be developed into a solution for delivery into the soil to directly kill termites, or a paint-on material which may prevent termites from infesting cut lumber. Because it can be ingested, it may also be used in developing a cheap bait to sustainably control termites over a long period of time.

More research for now needed

While the researchers are pleased with their findings, they are still planning to conduct further studies on aspects which may be needed to be investigated further or improved upon.

The group feels it is important for their studies to be repeated by various research institutions so that the results can be verified. According to the group, since CNSL is a natural product, its composition and properties would vary depending on from where it is sourced. This can have an effect on the termiticidal property of CNSL product.

Florante A. Cruz | Research asia research news
Further information:
http://rdenews.uplb.edu.ph
http://www.researchsea.com

More articles from Agricultural and Forestry Science:

nachricht Giving a chip about masa
18.07.2019 | American Society of Agronomy

nachricht Global farming trends threaten food security
11.07.2019 | Martin-Luther-Universität Halle-Wittenberg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>