Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exeter researchers discover a novel chemistry to protect our crops from fungal disease

30.03.2020

Pathogenic fungi pose a huge and growing threat to global food security.

Currently, we protect our crops against fungal disease by spraying them with anti-fungal chemistries, also known as fungicides.


Zymoseptoria tritici, the cause of Septoria tritici in wheat, treated with C18-SMe2+

Credit: University of Exeter

However, the growing threat of microbial resistance against these chemistries requires continuous development of new fungicides.

A consortium of researchers from the University of Exeter, led by Professor Gero Steinberg, combined their expertise to join the fight against plant pathogenic fungi.

In a recent publication, in the prestigious scientific journal Nature Communications, they report the identification of novel mono-alkyl chain lipophilic cations (MALCs) in protecting crops against Septoria tritici blotch in wheat and rice blast disease.

These diseases challenge temperate-grown wheat and rice, respectively, and so jeopardise the security of our two most important calorie crops.

The scientists' journey started with the discovery that MALCs inhibit the activity of fungal mitochondria.

Mitochondria are the cellular "power-house", required to provide the "fuel" for all essential processes in the pathogen.

By inhibiting an essential pathway in mitochondria, MALCs cut down the cellular energy supply, which eventually kills the pathogen.

Whilst Steinberg and colleagues show that this "mode of action" is common to the various MALCs tested, and effective against plant pathogenic fungi, one MALC that they synthesised and named C18-SMe2+ showed unexpected additional modes of action.

Firstly, C18-SMe2+ generates aggressive molecules inside the mitochondria, which target life-essential fungal proteins, and in turn initiate a "self-destruction" programme, which ultimately results in "cellular suicide" of the fungus.

Secondly, when applied to crop plants, C18-SMe2+ "alerts" the plant defence system, which prepares the crop for subsequent attack, thereby increasing the armoury of the plant against the intruder.

Most importantly, the Exeter researchers demonstrate that C18-SMe2+ shows no toxicity to plants and is less toxic to aquatic organisms and human cells than existing fungicides sprayed used in the field today.

Professor Steinberg said: "It is the combined approach of Exeter scientists, providing skills in fungal cell biology (myself, Dr Martin Schuster), fungal plant pathology (Professor Sarah J. Gurr), human cell biology (Professor Michael Schrader) and synthetic chemistry (Dr Mark Wood) that enabled us to develop and characterise this potent chemistry.

"The University has filed a patent (GB 1904744.8), in recognition of the potential of this novel chemistry in our perpetual fight against fungi.

"We now seek partners/investors to take this development to the field and prove its usefulness under 'real agricultural conditions'. Our long-term aim is to foster greater food security, in particular in developing nations."

Professor Steinberg added: "I always wanted to apply my research outside of the ivory tower of academia and combine the fundamental aspects of my work with a useful application.

"The visionary approach of the Biological Sciences Research Council (BBSRC) provided me with this opportunity, for which I am very grateful. In my mind, this project is a strong example of translational research that benefits the public."

Professor Sarah Gurr said: "This is such a timely and important study. We are increasingly aware of the growing burden of plant disease caused by fungi and of our need to safe-guard our calorie and commodity crops better.

"The challenge is not only to discover and describe the mode of action of new antifungals but to ensure that chemistries potent against fungi do not harm plants, wildlife or human health.

"This new antifungal is thus an exciting discovery and its usefulness may extend beyond crops into the realms of fungal disease in humans and, indeed to various applications in the paint and preservative industries. This merits investment!"

###

The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

The paper, published in the Journal Nature Communications, is entitled: "A lipophilic cation protects crops against fungal pathogens by multiple modes of action", authored by G. Steinberg, M. Schuster, S.J. Gurr, T. Schrader, M. Schrader, M. Wood, A. Early and S. Kilaru.

Media Contact

Alex Morrison
pressoffice@exeter.ac.uk
44-013-927-24828

 @uniofexeter

http://www.exeter.ac.uk 

Alex Morrison | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-020-14949-y

Further reports about: cell biology crops fungal fungal disease fungicides mitochondria pathogenic fungi

More articles from Agricultural and Forestry Science:

nachricht Engineers use electricity to clean up toxic water
08.07.2020 | University of Sydney

nachricht AI goes underground: root crop growth predicted with drone imagery
18.06.2020 | International Center for Tropical Agriculture (CIAT)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>