Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new source of maize hybrid vigor

29.06.2012
Steve Moose, an associate professor of maize functional genomics at the University of Illinois and his graduate student Wes Barber think they may have discovered a new source of heterosis, or hybrid vigor, in maize. They have been looking at small RNAs (sRNAs), a class of double-stranded RNA molecules that are 20 to 25 nucleotides in length.
“Hybrid vigor” refers to the increased vigor or general health, resistance to disease, and other superior qualities arising from the crossbreeding of genetically different plants. “We’ve always known that there’s a genetic basis for this heterosis,” said Moose. “Charles Darwin noticed it and commented that corn was particularly dramatic.”

Scientists have been debating the sources of hybrid vigor since the early 1900s when Mendel’s laws were rediscovered. Many of them disagreed with the model that prevailed from the 1920s to the 1950s, which linked heterosis to a single gene or to the interaction of several genes. “It seemed that the whole genome was involved,” said Moose.

The discovery of DNA in 1953 eventually caused a paradigm shift in the way people looked at hybrid vigor but, Moose said, there was no unifying theory. Even as new genetic technologies were developed, the genes did not seem to explain everything.

“We thought that maybe it’s the rest of the genome, the remaining 85 percent of the corn genome, that’s important,” said Moose.

sRNAs were originally found in 1998 in roundworms. Researchers studying virus resistance in plants then began to notice them and observed that the way that they function is very different from the functioningof protein-coding genes.

“Every time we have a breakthrough in our knowledge of genetics, people have looked to see if that breakthrough brings any insight into the mystery of the hybrid vigor,” said Moose. “That’s what we’ve done with the small RNAs.”

“When you think about what small RNAs do, they participate in regulating growth and they tell other genes what to do,” he continued. “So they have the two properties that we know fit what has been described (about heterosis) even though we do not have an explanation. We would argue that, while they are part of the explanation, they may not be the whole explanation.”

Moose and Barber sampled small RNAs from the seedling shoot and the developing ear of maize hybrids, two tissues that grow rapidly and program growth, to investigate how the small RNA profiles of these hybrids differed from those of their parents. In collaboration with associate professor of crop sciences Matt Hudson, they analyzed what they described as a “deluge” of data.

“There were 50 million data points, but we whittled it down to the most important ones,” said Barber.

They found that differences are due mainly to hybrids inheriting distinct small interfering RNAs (siRNAs), a subset of sRNAs, from each parent. The siRNAs interfere with gene expression. They also found that hybridization does not create new siRNAs, but hybrids have a more complex siRNA population than their parents because they inherit distinct siRNAs from both parents.

Moreover, the differences in parental siRNAs originated primarily from repeats, which are the result of retrotransposon activity. Retrotransposons are elements that move around and amplify themselves within a genome.

“This is a new source of genetic diversity that people had overlooked,” said Barber.

“We are not saying that genes are not important,” said Moose. “”But probably the way corn properties are altered in the hybrid situation is mediated by the small RNAs in addition to the genes.”

Moose and Barber hope that their work might provide more insight into how to decide which inbred maize lines to cross. “We don’t want to alter how the plant grows, but if we can tweak it to do whatever it already does either faster or more, that could be an advantage,” said Moose.

The article describing this work, “Repeat Associated Small RNAs Vary Among Parents and Following Hybridization in Maize” by Wesley T. Barber, WeiZhang, Hlaing Win, Kranthi K. Varala, Jane E. Dorweiler, Matthew E. Hudson, and Stephen P. Moose was published in the June 26, 2012, issue of Proceedings of the National Academy of Science.
News Writer
Susan Jongeneel, 217-333-3291
News Source
Steve Moose, 217-244-6308

Susan Jongeneel | EurekAlert!
Further information:
http://www.illinois.edu

Further reports about: RNA crop science hybrid vigor small RNA small interfering RNA

More articles from Agricultural and Forestry Science:

nachricht New parsley virus discovered by Braunschweig researchers
17.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Franco-German research initiative on low-pesticide agriculture in Europe
16.05.2019 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>