Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders Can Breathe Easier with Chromium-Free Alloy

14.02.2011
A new alloy promises to lessen welders’ risk of breathing toxic fumes on the job.

The alloy is a welding “consumable” – the material that melts under the welder’s torch to fill the gap between parts that are being joined.

The new nickel alloy consumable is more expensive compared to those already on the market, but worth the cost in situations where adequate ventilation is a problem.

That’s why two Ohio State University engineers invented the alloy – specifically to aid military and commercial welding personnel who work in tight spaces.

In tests, welds made with the new consumable proved just as strong and corrosion-resistant as welds made with commercial stainless steel consumables. When melted, however, the new alloy does not produce fumes of hexavalent chromium, a toxic form of the element chromium which has been linked to cancer.

All stainless steels contain chromium, but Gerald Frankel and John Lippold, both professors of materials science and engineering at Ohio State, determined that the consumable alloy that joins stainless steel parts together doesn’t have to contain the metal.

Use of the new alloy essentially eliminates hexavalent chromium in the welding fumes.

The university has three issued US patents and a pending European patent application covering a series of alloys – based on nickel and copper but with no chromium – all of which can be used with standard welding equipment.

The new alloy is expensive, however. The engineers estimated that it would cost five to 10 times more than standard welding consumables, depending on metal prices.

The Occupational Safety and Health Administration sets limits on workers’ exposure to hexavalent chromium in welding fumes, which affect welders themselves and their surrounding coworkers. Reduced exposure to such toxic fumes requires either extreme ventilation or use of a chromium-free consumable.

Frankel said that the high cost of the alloy would be justified in situations where ample ventilation may be impossible.

“I always think of someone welding a steel pipe, deep inside a ship at sea,” he said. “Ventilation might not be possible, and a breathing appartus for the welder would make working in a confined space even more difficult. In that case, using our alloy would lower the amount of ventilation needed, and help reduce costs overall.”

Frankel is a corrosion expert; Lippold is a welding expert. Lippold was already looking for ways to limit the amount of another metal – manganese, which can cause neurological damage – in welding consumables, when Frankel approached him about chromium.

“We came up with an alloy that is compatible with stainless steel from a corrosion perspective, and a welding process that results in high quality welds,” Lippold said. “It is a drop-in replacement for stainless steel comsumables welders use now.”

Sometimes welders use a consumable as a bare metal wire, and other times they need to use an electrode made from a metal core coated with flux – a chemical agent that removes impurities from the weld. The Ohio State alloy works for either application.

In the laboratory, the researchers performed electrochemical tests to optimize the composition for corrosion resistance. They also performed mechanical tests of the weld joint to test the alloy’s strength. The new alloy’s performance was comparable to standard commercial welding consumables for stainless steel.

Frankel and Lippold have begun further testing of their alloy with Euroweld, Ltd., a manufacturer of specialty welding materials headquartered in Mooresville, North Carolina.

The engineers are now working on ways to lower the cost of the consumable.

The university will license the alloy and its applications for commercial development.

The Strategic Environmental Research and Development Program – a partnership of the Department of Defense, the Environmental Protection Agency, and the Department of Energy – funded this research.

Contacts: Gerald Frankel, (614) 688-4128; Frankel.10@osu.edu
John Lippold, (614) 292-2466; Lippold.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Materials Sciences:

nachricht Molecular switch detects metals in the environment
15.08.2018 | Université de Genève

nachricht Breakthrough in nanoresearch - Quantum chains in graphene nanoribbons
09.08.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>