Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching concrete explode

02.05.2019

Even if concrete is not flammable, it can be hazardous in tunnel fires: high-performance concrete can explode at high temperatures. Although the phenomenon is well known, the physics behind it have not yet been fully understood. Empa researchers have now made the processes inside concrete visible for the first time using real-time-neutron radiography and tomography.

Gotthard, Montblanc, St. Bernardino – tunnel fires repeatedly cause the ceilings of the seemingly stable tubes to collapse. Infernal temperatures of up to 1000 degrees Celsius push concrete to its limits – and depending on the specific material in question, it can explode. However, the process has not yet been fully understood.


In tunnel fires, concrete can be a major hazard, not at least for rescue groups.

www.ifa-swiss.ch

It is clear that the water contained in high-performance concrete starts to move and evaporates – but cannot escape. The enormous vapor pressure in the fine pores of the concrete and the thermal stress on the material can cause parts to be blown off.

Whether such explosions actually occur and how serious the consequences are depends on numerous factors and can hardly be predicted.

In order to better understand the physics of bursting concrete, Empa researchers and a team from the University of Grenoble and the Laue-Langevin Institute, also in Grenoble, have for the first time used neutron tomography to produce three-dimensional images of the interior of heated concrete in real time.

The investigations were only possible thanks to the strong neutron source at the Laue-Langevin Institute. The scientists took up to 500 pictures per minute and constructed a unique three-dimensional model of the spalling concrete.

So far experts have only been able to conclude that water in concrete moves away from a heat source and accumulates. The moisture would thus act as a barrier and would prevent water vapor from escaping.

Therefore, the vapor pressure would rise to the extent that the material would have no choice but to explode. Using the new experimental setup, the Empa researchers and their colleagues could now actually observe this moisture barrier.

Under pressure

Concrete consists of a mixture of sand, cement and water. A chemical reaction occurs between cement and water, which chemically and physically binds the water and hardens the mixture. If the temperature in a fire exceeds 200 degrees Celsius, the cement in the concrete dehydrates and the bound water turns into vapor. High-performance concrete generally has very low porosity and very fine pores.

These properties are of great advantage as they provide high strength and exceptional durability, making the concrete virtually impermeable to external contaminants. However, the low permeability of high-performance concrete turns out to be a disadvantage in the case of a fire with very high temperatures because water vapor cannot escape and extremely high vapor pressures can build up.

Empa researchers have already developed and patented new additives that counteract the spalling of concrete. The new results should now lead to be a further step towards the development of safe building materials with greater resistance even at the highest temperatures, such as a tunnel fire.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Pietro Lura
Concrete / Construction Chemistry
pietro.lutra@empa.ch
Phone +41 58 765 41 35

Dr. Benedikt Weber
Concrete / Construction Chemistry
Benedikt.Weber@empa.ch
Phone +41 58 765 48 86

Originalpublikation:

Analysis of moisture migration in concrete at high temperature through in-situ neutron tomography, D Dautia, A Tengattini, S Dal Pont, N Toropovs, M Briffaut, B Weber, Cement and Concrete Research (2018).
https://doi.org/10.1016/j.cemconres.2018.06.010

Weitere Informationen:

https://www.youtube.com/watch?v=NxJPX0lssIQ
https://www.empa.ch/web/s604/concrete-explosion

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Materials Sciences:

nachricht Freiburg researcher investigate the origins of surface texture
17.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding Metal Ion Release from Hip Implants
17.02.2020 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>