Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists discovering new uses for tiny carbon nanotubes

15.05.2013
Adding ionic liquid to nanotube films could build smaller gadgets, and create more cost effective 'Smart Windows' that darken in bright sun

The atom-sized world of carbon nanotubes holds great promise for a future demanding smaller and faster electronic components. Nanotubes are stronger than steel and smaller than any element of silicon-based electronics—the ubiquitous component of today's electrical devices—and have better conductivity, which means they can potentially process information faster while using less energy.

The challenge has been figuring out how to incorporate all those great properties into useful electronic devices. A new discovery by four scientists at the University of California, Riverside has brought us closer to the goal. They discovered that by adding ionic liquid—a kind of liquid salt—they can modify the optical transparency of single-walled carbon nanotube films in a controlled pattern.

"It was a discovery, not something we were looking for," said Robert Haddon, director of UC Riverside's Center for Nanoscale Science and Engineering. Scientists Feihu Wang, Mikhail Itkis and Elena Bekyarova were looking at ways to improve the electrical behavior of carbon nanotubes, and as part of their research they also looked at whether they could modulate the transparency of the films. An article about their findings was published online in April in Nature Photonics.

The scientists spent some time trying to affect the optical properties of carbon nanotube films with an electric field, with little success, said Itkis, a research scientist at the Center for Nanoscale Science and Engineering. "But when we applied a thin layer of an ionic liquid on top of the nanotube film we noticed that the change of transparency is amplified 100 times and that the change in transparency occurs in the vicinity of one of the electrodes, so we started studying what causes these drastic changes and how to create transparency in controlled patterns."

An ionic liquid contains negative and positive ions which can interact with the nanotubes, dramatically influencing their ability to store an electrical charge. That increases or decreases their transparency, similar to the way that glasses darken in sunlight. By learning how to manipulate the transparency, scientists may be able to start incorporating nanotube films into products that now rely on slower or heavier components, such as metal oxide.

For instance, using nanotube films meshed with a film of ionic liquid, scientists could create more cost effective Smart Windows, that darken when it's hot outside and become lighter when it's cold.

"Smart Windows are a new industry that has been shown to save 50 percent of your energy costs," said Itkis. "On a very hot day you can shade your window just by turning a switch, so you don't have to use as much air conditioning. And on a winter day, you can make a window more transparent to let in more light."

The scientists still need to study the economic viability of using nanotube film, but Bekyarova said one possible advantage would be that carbon nanotubes are ultra thin—about 1,000 times smaller than a single strand of hair—so you would need very little to cover a large area, such as the windows of a large building.

Itkis said nanotube films also hold great promise in building lighter and more compact analytical instruments such as spectrometers, which are used to analyze the properties of light.

In this application, a nanotube film with an array of electrodes can be used as an electrically configurable diffraction grating for an infrared spectrometer, allowing the wavelength of light to be scanned without moving parts.

Furthermore, by using addressable electrodes, the spatial pattern of the induced transparency in the nanotube film can be modified in a controlled way and used as an electrically configurable optical media for storage and transfer of information via patterns of light.

Carbon nanotubes have great potential, but there is still plenty of work to be done to make them useful in electronics and optoelectronics, Haddon said.

"The challenge is to harness their outstanding properties," he said. "They won't be available at Home Depot next week, but there is continuing progress in the field."

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

By Jeanette Marantos

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Materials Sciences:

nachricht 3D inks that can be erased selectively
16.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Designing Nanocrystals for more efficient Optoelectronics
16.08.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>