Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

These could revolutionize the world

24.05.2018

Vanderbilt prof cracks code to cheap, small carbon nanotubes

Imagine a box you plug into the wall that cleans your toxic air and pays you cash.


These are small diameter carbon nanotubes grown on a stainless steel surface.

Credit: Pint Lab/Vanderbilt Univerity

That's essentially what Vanderbilt University researchers produced after discovering the blueprint for turning the carbon dioxide into the most valuable material ever sold - carbon nanotubes with small diameters.

Carbon nanotubes are supermaterials that can be stronger than steel and more conductive than copper. The reason they're not in every application from batteries to tires is that these amazing properties only show up in the tiniest nanotubes, which are extremely expensive. Not only did the Vanderbilt team show they can make these materials from carbon dioxide sucked from the air, but how to do this in a way that is much cheaper than any other method out there.

These materials, which Assistant Professor of Mechanical Engineering Cary Pint calls "black gold," could steer the conversation from the negative impact of emissions to how we can use them in future technology.

"One of the most exciting things about what we've done is use electrochemistry to pull apart carbon dioxide into elemental constituents of carbon and oxygen and stitch together, with nanometer precision, those carbon atoms into new forms of matter," Pint said. "That opens the door to being able to generate really valuable products with carbon nanotubes.

"These could revolutionize the world."

In a report published today in ACS Applied Materials and Interfaces, Pint, interdisciplinary material science Ph.D. student Anna Douglas and their team describe how tiny nanoparticles 10,000 times smaller than a human hair can be produced from coatings on stainless steel surfaces. The key was making them small enough to be valuable.

"The cheapest carbon nanotubes on the market cost around $100-200 per kilogram," Douglas said. "Our research advance demonstrates a pathway to synthesize carbon nanotubes better in quality than these materials with lower cost and using carbon dioxide captured from the air."

But making small nanotubes is no small task. The research team showed that a process called Ostwald ripening -- where the nanoparticles that grow the carbon nanotubes change in size to larger diameters -- is a key contender against producing the infinitely more useful size. The team showed they could partially overcome this by tuning electrochemical parameters to minimize these pesky large nanoparticles.

This core technology led Pint and Douglas to co-found SkyNano LLC, a company focused on building upon the science of this process to scale up and commercialize products from these materials.

"What we've learned is the science that opens the door to now build some of the most valuable materials in our world, such as diamonds and single-walled carbon nanotubes, from carbon dioxide that we capture from air through our process," Pint said.

###

Video related to the research: https://youtu.be/neoAlC89Jrw

Link to SkyNano LLC page:

https://www.skynanotechnologies.com/

Link to Cary Pint's webpage:

https://my.vanderbilt.edu/pintlab/cary_pint/

Other researchers involved in the study were Rachel Carter, formerly a Vanderbilt University Ph.D. student and presently a Nuclear Regulatory Commission postdoctoral fellow at Naval Research Laboratory, and Mengya Li, graduate student in mechanical engineering at Vanderbilt University.

This work was supported in part by National Science Foundation grant CMMI 1400424 and Vanderbilt University start-up funds. Douglas is supported in part by a National Science Foundation Graduate Research Fellowship.

Heidi Hall | EurekAlert!
Further information:
https://news.vanderbilt.edu/2018/05/23/these-could-revolutionize-the-world-pint-cracks-code-to-cheap-small-carbon-nanotubes/
http://dx.doi.org/10.1021/acsami.8b02834

More articles from Materials Sciences:

nachricht Higher-order topology found in 2D crystal
15.07.2020 | Pohang University of Science & Technology (POSTECH)

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Tiny bubbles make a quantum leap

15.07.2020 | Physics and Astronomy

Higher-order topology found in 2D crystal

15.07.2020 | Materials Sciences

Russian scientists have discovered a new physical paradox

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>