Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The best of two worlds: Magnetism and Weyl semimetals


Imagine a world in which electricity could flow through the grid without any losses or where all the data in the world could be stored in the cloud without the need for power stations. This seems unimaginable but a path towards such a dream has opened with the discovery of a new family of materials with magical properties.

These materials - magnetic Weyl semi-metals - are innately quantum but bridge the two worlds of topology and spintronics. Topological materials exhibit strange properties including super-fast electrons that travel without any energy loss.

The combination of magnetism and topology leads to new sciences and applications in thermoelectric, spintronic, photovoltaic, quantum computing, and other quantum technologies

Credit: MPI CPfS

Usage Restrictions: The image may only be used with appropriate caption or credit with the author's consent.

On the other hand magnetic materials are essential to our everyday lives from magnets for electric cars to spintronic-devices in every hard disk drive in computers and in the cloud. The concept of a magnetic Weyl semi-metal (WSM) was in the air but a real life material has only just now been realized by the team of Claudia Felser, Director at the MPI CPfS, Dresden, in two very different compounds Co2MnGa and Co3Sn2S2.

To find these extraordinary materials, Felser's team scanned the materials database and came up with a list of promising candidates [1-5]. The proof that these materials are magnetic WSMs was obtained via electronic structure investigations of Co2MnGa and Co3Sn2S2 [6-8]. Scientists from Claudia Felser's group at the MPI CPfS and Stuart Parkin's team at the MPI of Microstructure Physics, Halle, in collaboration with M. Zahid Hasan's team from Princeton, Yulin Chen's team from Oxford University, and Haim Beidenkopf's team from the Weizmann Institute of Science, have experimentally confirmed the existence of magnetic Weyl fermions in these two materials in studies that were published in three papers in Science Magazine today.

For the very first time, using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscope (STM) experiments, time-reversal symmetry broken WSM states were observed, made possible by the high quality single crystals grown at the MPI CPfS. "The discovery of magnetic WSMs is a big step towards the realization of high temperature quantum and spintronic effects.

These two materials, that are members of the highly tunable Heusler and Shandite families, respectively, are ideal platforms for various future applications in spintronic and magneto-optic technologies for data storage, and information processing as well as applications in energy conversion systems," says Stuart Parkin, the Managing Director of the Max Planck Institute of Microstructure Physics, Halle.

The magnetic topological states in Co2MnGa and Co3Sn2S2 play a crucial role in the origin of the observed anomalous quantum transport effects, due to the strong Berry curvature associated with their topological states. With Weyl nodal line and nodal point band structures, Co2MnGa and Co3Sn2S2 are the only two currently known examples of materials that host both large anomalous Hall conductivity and anomalous Hall angle [3, 4, 6].

"Our materials have the natural advantages of high order temperature, clear topological band structure, low charge carrier density, and strong electromagnetic response. The design of a material that exhibits a high temperature quantum anomalous Hall effect (QAHE) via quantum confinement of a magnetic WSM, and its integration into quantum devices is our next step," says Claudia Felser.

The discovery of magnetic WSMs is a big step to the realization of a room temperature QAHE and is the basis for new energy conversion concepts "A Quantum Anomalous Hall effect enables dissipationless transport via chiral edge states that are innately spin-polarized." realized Yan Sun immediately.

Realization of the QAHE at room temperature would be revolutionary by overcoming limitations of many of today's data based technologies, which are affected by large electron scattering-induced power loss. This would pave the way to a new generation of low energy consuming quantum electronic and spintronic devices.


Science DOIs:

DOI: 10.1126/science.aav2334
DOI: 10.1126/science.aav2327
DOI: 10.1126/science.aav2873

[1] J. Kübler and C. Felser, EPL, 114, 47005 (2016).

[2] Qiunan Xu et al., PRB 97, 235416 (2018).

[3] Enke Liu et al., Nat. Phy. 14, 1125 (2018).

[4] Kaustuv Manna et al., PRX 8, 041045 (2018).

[5] Satya N. Guin et al. Adv. Mater. 31, 1806622 (2019).

[6] Ilya Belopolski et al. Science 365, 1278 (2019)

[7] D. F. Liu, et al. Science 365, 1282-1285 (2019)

[8] Noam Morali et al. Science 365, 1286-1291 (2019)

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Claudia Felser | EurekAlert!
Further information:

Further reports about: MPI Max Planck Institute Microstructure magnetism semimetals

More articles from Materials Sciences:

nachricht New material captures carbon dioxide
15.10.2019 | Kyoto University

nachricht Bayreuth researchers discover stable high-energy material
15.10.2019 | Universität Bayreuth

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Quantum physics: Ménage à trois photon-style

16.10.2019 | Physics and Astronomy

Airborne chemicals instantly identified using new technology developed at NTU Singapore

16.10.2019 | Life Sciences

Always on beat: ultrashort flashes of light under optical control

16.10.2019 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>