Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

That new yarn? -- wearable, washable textile devices are possible with MXene-coated yarns

11.10.2019

Drexel's MXene-coated conductive yarn could make devices wearable -- and washable

Producing functional fabrics that perform all the functions we want, while retaining the characteristics of fabric we're accustomed to is no easy task.


Researchers in Drexel University's College of Engineering and Center for Functional Fabrics have developed a way to coat yarn with conductive MXene materials to make durable functional textiles.

Credit: Drexel University


Drexel University researchers developed and tested conductive MXene yarn in industrial digital knitting machines.

Credit: Drexel University

Two groups of researchers at Drexel University - one, who is leading the development of industrial functional fabric production techniques, and the other, a pioneer in the study and application of one of the strongest, most electrically conductive super materials in use today - believe they have a solution.

They've improved a basic element of textiles: yarn. By adding technical capabilities to the fibers that give textiles their character, fit and feel, the team has shown that it can knit new functionality into fabrics without limiting their wearability.

... more about:
»MXene »coating »fibers »textile

In a paper recently published in the journal Advanced Functional Materials, the researchers, led by Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel's College of Engineering, and Genevieve Dion, an associate professor in Westphal College of Media Arts & Design and director of Drexel's Center for Functional Fabrics, showed that they can create a highly conductive, durable yarn by coating standard cellulose-based yarns with a type of conductive two-dimensional material called MXene.

Hitting snags

"Current wearables utilize conventional batteries, which are bulky and uncomfortable, and can impose design limitations to the final product," they write. "Therefore, the development of flexible, electrochemically and electromechanically active yarns, which can be engineered and knitted into full fabrics provide new and practical insights for the scalable production of textile-based devices."

The team reported that its conductive yarn packs more conductive material into the fibers and can be knitted by a standard industrial knitting machine to produce a textile with top-notch electrical performance capabilities. This combination of ability and durability stands apart from the rest of the functional fabric field today.

Most attempts to turn textiles into wearable technology use stiff metallic fibers that alter the texture and physical behavior of the fabric. Other attempts to make conductive textiles using silver nanoparticles and graphene and other carbon materials raise environmental concerns and come up short on performance requirements. And the coating methods that are successfully able to apply enough material to a textile substrate to make it highly conductive also tend to make the yarns and fabrics too brittle to withstand normal wear and tear.

"Some of the biggest challenges in our field are developing innovative functional yarns at scale that are robust enough to be integrated into the textile manufacturing process and withstand washing," Dion said. "We believe that demonstrating the manufacturability of any new conductive yarn during experimental stages is crucial. High electrical conductivity and electrochemical performance are important, but so are conductive yarns that can be produced by a simple and scalable process with suitable mechanical properties for textile integration. All must be taken into consideration for the successful development of the next-generation devices that can be worn like everyday garments."

The winning combination

Dion has been a pioneer in the field of wearable technology, by drawing on her background on fashion and industrial design to produce new processes for creating fabrics with new technological capabilities. Her work has been recognized by the Department of Defense, which included Drexel, and Dion, in its Advanced Functional Fabrics of America effort to make the country a leader in the field.

She teamed with Gogotsi, who is a leading researcher in the area of two-dimensional conductive materials, to approach the challenge of making a conductive yarn that would hold up to knitting, wearing and washing.

Gogotsi's group was part of the Drexel team that discovered highly conductive two-dimensional materials, called MXenes, in 2011 and have been exploring their exceptional properties and applications for them ever since. His group has shown that it can synthesize MXenes that mix with water to create inks and spray coatings without any additives or surfactants - a revelation that made them a natural candidate for making conductive yarn that could be used in functional fabrics.

"Researchers have explored adding graphene and carbon nanotube coatings to yarn, our group has also looked at a number of carbon coatings in the past," Gogotsi said. "But achieving the level of conductivity that we demonstrate with MXenes has not been possible until now. It is approaching the conductivity of silver nanowire-coated yarns, but the use of silver in the textile industry is severely limited due to its dissolution and harmful effect on the environment. Moreover, MXenes could be used to add electrical energy storage capability, sensing, electromagnetic interference shielding and many other useful properties to textiles."

In its basic form, titanium carbide MXene looks like a black powder. But it is actually composed of flakes that are just a few atoms thick, which can be produced at various sizes. Larger flakes mean more surface area and greater conductivity, so the team found that it was possible to boost the performance of the yarn by infiltrating the individual fibers with smaller flakes and then coating the yarn itself with a layer of larger-flake MXene.

Putting it to the test

The team created the conductive yarns from three common, cellulose-based yarns: cotton, bamboo and linen. They applied the MXene material via dip-coating, which is a standard dyeing method, before testing them by knitting full fabrics on an industrial knitting machine - the kind used to make most of the sweaters and scarves you'll see this fall.

Each type of yarn was knit into three different fabric swatches using three different stitch patterns - single jersey, half gauge and interlock - to ensure that they are durable enough to hold up in any textile from a tightly knit sweater to a loose-knit scarf.

"The ability to knit MXene-coated cellulose-based yarns with different stitch patterns allowed us to control the fabric properties, such as porosity and thickness for various applications," the researchers write.

To put the new threads to the test in a technological application, the team knitted some touch-sensitive textiles - the sort that are being explored by Levi's and Yves Saint Laurent as part of Google's Project Jacquard.

Not only did the MXene-based conductive yarns hold up against the wear and tear of the industrial knitting machines, but the fabrics produced survived a battery of tests to prove its durability. Tugging, twisting, bending and - most importantly - washing, did not diminish the touch-sensing abilities of the yarn, the team reported - even after dozens of trips through the spin cycle.

Pushing forward

But the researchers suggest that the ultimate advantage of using MXene-coated conductive yarns to produce these special textiles is that all of the functionality can be seamlessly integrated into the textiles. So instead of having to add an external battery to power the wearable device, or wirelessly connect it to your smartphone, these energy storage devices and antennas would be made of fabric as well - an integration that, though literally seamed, is a much smoother way to incorporate the technology.

"Electrically conducting yarns are quintessential for wearable applications because they can be engineered to perform specific functions in a wide array of technologies," they write.

Using conductive yarns also means that a wider variety of technological customization and innovations are possible via the knitting process. For example, "the performance of the knitted pressure sensor can be further improved in the future by changing the yarn type, stitch pattern, active material loading and the dielectric layer to result in higher capacitance changes," according to the authors.

Dion's team at the Center for Functional Fabrics is already putting this development to the test in a number of projects, including a collaboration with textile manufacturer Apex Mills - one of the leading producers of material for car seats and interiors. And Gogotsi suggests the next step for this work will be tuning the coating process to add just the right amount of conductive MXene material to the yarn for specific uses.

"With this MXene yarn, so many applications are possible," Gogotsi said. "You can think about making car seats with it so the car knows the size and weight of the passenger to optimize safety settings; textile pressure sensors could be in sports apparel to monitor performance, or woven into carpets to help connected houses discern how many people are home - your imagination is the limit."

###

In addition to Gogotsi and Dion, Drexel College of Engineering doctoral students Simge Uzun, Mohamed Alhabeb, Ariana S. Levitt, Mark Anayee; Amy L. Stoltzfus, a master's student in Westphal College; Christina J. Strobel, an undergraduate in the College of Engineering; and Joselito M. Razal, and Shayan Seyedin, researchers at Deakin University in Australia, contributed to this research. The work was supported by the U.S. Department of Energy.

Media Contact

Britt Faulstick
bef29@drexel.edu
215-895-2617

 @DrexelNews

http://www.Drexel.edu/ 

Britt Faulstick | EurekAlert!

Further reports about: MXene coating fibers textile

More articles from Materials Sciences:

nachricht Theoretical tubulanes inspire ultrahard polymers
14.11.2019 | Rice University

nachricht New spin directions in pyrite an encouraging sign for future spintronics
14.11.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>