Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Responsive material could be the 'golden ticket' of sensing

07.01.2015

Researchers from the University of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres 'glued' together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

The interplay between the lipid spheres, called giant vesicles, and the strands of DNA produces a unique response when the material is exposed to changes in temperature. Instead of expanding when heated - as is normally the case - the material contracts, a phenomenon known as negative thermal expansion. Details are published today (7 January) in the journal Nature Communications.


This image shows a lipid membrane functionalized with DNA-linkers

Credit: Lorenzo Di Michele

In addition to its role as a carrier of genetic information, DNA is also useful for building advanced materials. Short strands of DNA, dubbed 'sticky ends', can be customised so that they will only bind to specific complementary sequences. This flexibility allows researchers to use DNA to drive the self-assembly of materials into specific shapes.

Basing self-assembled materials around vesicles - synthetic versions of the soft sacs which envelop living cells - allows for even more flexibility, since the vesicles are so easily deformable. Using short DNA tethers with a cholesterol 'anchor' at one end and an exposed sticky DNA sequence at the other, the vesicles can be stuck together. When assembled into a hybrid DNA-lipid network, the DNA tethers can diffuse and rearrange, resulting in massive vesicle shape changes.

Besides negative thermal expansion, the researchers also found that changes in temperature lead to a significant variation in the porosity of the material, which is therefore highly controllable. A similar response is expected by changing the concentration of the DNA tethers, which could also be replaced by other types of ligand-receptor pairs, such as antibodies.

"The characteristics of this material make it suitable for several different applications, ranging from filtration, to the encapsulation and triggered release of drugs, to biosensors," said Dr Lorenzo Di Michele of the University's Cavendish Laboratory, who led the research. "Having this kind of control over a material is like a 'golden ticket' of sensing."

This research is part of the CAPITALS, a UK-wide programme funded by the Engineering and Physical Sciences Research Council (EPSRC). Cambridge Enterprise, the University's commercialisation arm, is currently looking for commercial partners to help develop this material.

Sarah Collins | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>