Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers mimic lotus leaves for self-cleaning PV arrays, non-stick MEMS

16.10.2006
Researchers at the Georgia Institute of Technology are mimicking one of Nature's best non-stick surfaces to help create more reliable electric transmission systems, photovoltaic arrays that retain their efficiency, MEMS structures unaffected by water and improved biocompatible surfaces able to prevent cells from adhering to implanted medical devices.

Based on a collaboration of materials scientists and chemical engineers, the research aims to duplicate the self-cleaning surfaces of the lotus plant, which grows in waterways of Asia. Despite growing in muddy conditions, the leaves and flowers remain clean because their surfaces are composed of micron- and nano-scale structures that – along with a waxy coating – prevent dirt and water from adhering. Despite their unusual surface properties, the rough surfaces allow photosynthesis to continue in the leaves.

"When rain hits the leaves of the lotus plant, it simply beads up," noted C.P. Wong, a Regents Professor in Georgia Tech's School of Materials Science and Engineering. "When the leaves are also tilted at a small angle, the beads of water run off instantaneously. While the water is rolling off, it carries away any dirt on the surface."

The self-cleaning action of the lotus plant has intrigued researchers for decades, and recent studies done by researchers in several different groups have demonstrated the reasons behind the plant's unique abilities.

The plant's ability to repel water and dirt results from an unusual combination of a superhydrophobic (water-repelling) surface and a combination of micron-scale hills and valleys and nanometer-scale waxy bumps that create rough surfaces that don't give water or dirt a chance to adhere.

"Because of the combination of nano-scale and micron-scale structures, water droplets can only contact about three percent of the surface," Wong said. "They're just not touching very much of the lotus surface as compared to a smooth surface."

To address several unique applications, Georgia Tech researchers have attempted to duplicate the two-tier lotus surface using a variety of materials, including polybutadiene. But that organic compound isn't suitable for coatings that are exposed to sunlight because ultraviolet radiation breaks down its carbon bonds. So to address their first lotus application – self-cleaning insulators used on high-voltage power lines – the researchers had to develop another material.

Supported by the National Electric Energy Testing Research and Applications Center (NEETRAC), that project would solve a problem that plagues electric utilities. The build-up of dirt and dust on ceramic or silicone insulators used by high-voltage power lines can eventually create a short circuit that can damage the electric distribution network. It's impractical to manually clean the insulators.

Wong and collaborators Yonghao Xiu, Lingbo Zhu and Dennis Hess have developed a lotus surface able to withstand ultraviolet radiation using a combination of silicone, fluorocarbons, and inorganics such as titanium dioxide and silicon dioxide. Their prototype coating has shown excellent durability in long-term testing.

Supported by the National Science Foundation, NASA and other agencies, Georgia Tech is also pursuing other work based on lotus applications:

Use of carbon nanotube bundles to create the surface bumps needed to prevent dust from accumulating on the surfaces of photovoltaic (PV) cells, space suits and other equipment intended for use on the moon or Mars – where there's no rain. Arranging patterns of nanotube bundles a few microns apart and applying a weak electrical charge should help keep dust away and maintain maximum efficiency in the PV cells that power space missions.

Application of lotus coatings to prevent "stiction," which is the strong adhesive force that can form between the structures of micro-electromechanical systems (MEMS) and substrates. The magnitude of these forces can be enough to deform the structures, resulting in device failure. With its superhydrophobicity and surface roughness, a lotus surface coating can prevent stiction, Wong said.

A two-tier surface system composed of hexagonally-packed silica spheres on which gold nanoparticles were deposited. The resulting chemical and physical structures were studied to establish the impact of surface hydrophobicity and roughness on the measured contact angles on the rough surfaces.

Lotus surfaces for use in implantable medical devices to prevent cells from attaching to form blood clots. If successful, this application could replace anti-clotting materials that are coated onto implantable devices such as stents used to hold blood vessels open.

The lotus plant is yet another example of how researchers can learn surprising lessons from what Nature has provided, Wong noted.

"It's not easy to get dust and dirt off a smooth surface," he said. "Though it seems counterintuitive, the roughness actually helps the cleaning process. We believe this lotus surface will have many potential applications."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>