Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher discovers new materials

11.07.2006
Nanostructured materials developed

A research team led by Carnegie Mellon University Materials Science and Biomedical Engineering Professor Prashant Kumta has discovered a nanocrystalline material that is cheaper, more stable and produces a higher quality energy storage capacity for use in a variety of industrial and portable consumer electronic products. Kumta said the discovery, published this summer in Advanced Materials Journal, has important implications for increasing the longevity of rechargeable car batteries, fuel cells and other battery-operated electronic devices.

"We have found that synthesis of nanostructured vanadium nitride and controlled oxidation of the surface at the nanoscale is key to creating the next generation of supercapacitors commonly used in everything from cars, camcorders and lawn mowers to industrial backup power systems at hospitals and airports," Kumta said.

Dramatic growth in computer use is making consumers require more from their electronic devices, which creates increased demand for a better power source than existing battery technology. Today's batteries are also powered by ruthenium, which sells for $100 per gram, compared with the more economical vanadium nitride at $50 a gram.

"Not only is vanadium nitride less expensive to use, it can also store energy much longer, giving users a greater burst of juice for the old finicky car battery or the hospital's backup power system," Kumta said.

As people use cell phones to do more than just communicate -- as they watch movies, listen to music and process family photos -- they need more power. And this new nanocrystalline will solve some of those challenges, according to Kumta.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Materials Sciences:

nachricht Novel sensors could enable smarter textiles
17.08.2018 | University of Delaware

nachricht Quantum material is promising 'ion conductor' for research, new technologies
17.08.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>