Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressable photonic crystals produce full-colour fingerprints and promise enhanced security

15.03.2006


Experiment reveals layers of data missed by traditional ink fingerprints

In the future, law enforcement officials may take full-colour fingerprints using new technology developed by a University of Toronto-led team of international researchers.

Far from the basic black-and-white fingerprints collected today, the new technology would use elastic photonic crystals to capture data-rich fingerprints in multiple colours, but the fingerprinting technique is just one potential application for the new technology. A paper on the new research is featured on the cover of the current issue of the journal Nature Materials.



"You can elastically deform these crystals and produce different colours," says lead author André Arsenault, a PhD candidate in the laboratory of Geoffrey Ozin, a University Professor in the Department of Chemistry and a Canada Research Chair in materials chemistry.

Photonic crystals are a relatively new development in the scientific quest to control light. Ozin’s lab first created photonic crystals in 2002, using spherical particles of silica mere micrometres in diameter that self-assemble into neat layers, creating what’s known as an opal. After filling the space between the spheres with silicon, they used acid etching to remove the silica balls. This left an ordered sponge of air bubbles in silicon known as an inverse opal. This photonic crystal material, the first of its kind, did indeed trap light. These photonic crystals can produce colour based on how an electromagnetic wave interacts with the structure -- meaning that it could be tuned to produce any colour.

In the new study, the team injected an elastic compound between the spheres, which were then etched away, leaving an orderly and compressible elastic foam that can be transferred onto virtually any surface, such as glass, metal or plastic. The material changes colour based on how far the spheres are separated.

"The material we have is very, very thin," Arsenault says. "We can coat it onto any surface we want." If the foam is compressed, it alters the lattice dimensions, changing the wavelength of light that it produces. The team demonstrated the fingerprint application, using Arsenault’s finger, and produced both still images and a video of the process, which captures detailed information about pressure patterns and surface ridges that may not be visible to the naked eye.

Taking it one step further, Arsenault made a rubber replica of his fingertip, which might fool a traditional fingerprint scan. "If you press the rubber replica into the material, the pressure impressions that you get are very different," he says. "The lines are much sharper, because the material is less soft. From the standpoint of biometrics, this could provide better security."

Arsenault says the technology could be used not only for colour fingerprints, but in sensors for air-bag release mechanisms in cars, strain and torque sensors on support beams of high-rise buildings and in laser sources. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the University of Toronto, EC NoE Phoremost and Deutsche Forschungsgemeinschaft.

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Materials Sciences:

nachricht Detecting damage in non-magnetic steel with the help of magnetism
23.07.2018 | Johannes Gutenberg Universitaet Mainz

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>