Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanosensor uses quantum dots to detect DNA

07.12.2005


Quick, highly sensitive method makes genetic material glow



Using tiny semiconductor crystals, biological probes and a laser, Johns Hopkins University engineers have developed a new method of finding specific sequences of DNA by making them light up beneath a microscope.

The researchers, who say the technique will have important uses in medical research, demonstrated its potential in their lab by detecting a sample of DNA containing a mutation linked to ovarian cancer.


The Johns Hopkins team described the new DNA nanosensor in a paper published in the November 2005 issue of the journal Nature Materials.

"Conventional methods of finding and identifying samples of DNA are cumbersome and time-consuming," said Jeff Tza-Huei Wang, senior author of the paper and supervisor of the research team. "This new technique is ultrasensitive, quick and relatively simple. It can be used to look for a particular part of a DNA sequence, as well as for genetic defects and mutations."

The technique involves an unusual blend of organic and inorganic components. "We are the first to demonstrate the use of quantum dots as a DNA sensor," Wang said.

Quantum dots are crystals of semiconductor material, whose sizes are only in the range of a few nanometers across. (A nanometer is one-billionth of a meter.) They are traditionally used in electronic circuitry. In recent years, however, scientists have begun to explore their use in biological projects.

Wang, an assistant professor in the Department of Mechanical Engineering and the Whitaker Biomedical Engineering Institute at Johns Hopkins, led his team in exploiting an important property of quantum dots: They can easily transfer energy. When a laser shines on a quantum dot, it can pass the energy on to a nearby molecule, which in turn emits a fluorescent glow that is visible under a microscope.

But quantum dots alone cannot find and identify DNA strands. For that, the Johns Hopkins team used two biological probes made of synthetic DNA. Each of these probes is a complement to the DNA sequence the researchers are searching for. Therefore, the probes seek out and bind to the target DNA.

Each DNA probe also has an important partner. Attached to one is a Cy5 molecule that glows when it receives energy. Attached to the second probe is a molecule called biotin. Biotin sticks to yet another molecule called streptavidin, which coats the surface of the quantum dot.

To create their nanosensor, the researchers mixed the two DNA probes, plus a quantum dot, in a lab dish containing the DNA they were trying to detect. Then nature took its course. First, the two DNA probes linked up to the target DNA strand, holding it in a sandwich-like embrace. Then the biotin on one of the probes caused the DNA "sandwich" to stick to the surface of the quantum dot.

Finally, when the researchers shined a laser on the mix, the quantum dot passed the energy on to the Cy5 molecule that was attached to the second probe. The Cy5 released this energy as a fluorescent glow. If the target DNA had not been present in the solution, the four components would not have joined together, and the distinctive glow would not have appeared. Each quantum dot can connect to up to about 60 DNA sequences, making the combined glow even brighter and easier to see.

To test the new technique, Wang’s team obtained DNA samples from patients with ovarian cancer and detected DNA sequences containing a critical mutation. "This method may help us identify people at risk of developing cancer, so that treatment can begin at a very early stage," Wang said.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>