Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everlasting Fibre-glass Plastic

24.05.2004


More durable helmets, vests, ski-sticks and various other fibre-glass plastic products are close to becoming a reality. Provided, of course, the manufacturers apply new technology – the one developed by the Chernogolovka scientists supported by the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises (FASIE).



When fibre-glass plastic products were first introduced to the market, the applicability of the material seemed truly unlimited. Later there appeared quite a number of disadvantages to accompany the numerous benefits. Helmets and ski-sticks got broken and boats got cracked. The reason is quite trivial for a composite material – insufficiently strong cohesion between the base, i.e. glass fiber, and the polymer matrix. Under loads and especially in the presence of moisture, the polymer gets exfoliated from the glass fibers which results in cracking. Besides, in extreme conditions the reinforcing glass fiber itself is split into separate monofibres, thus, causing the product destruction.

Theoretically, the solution to this problem is evident: the cohesion among the reinforcing fibers and with the matrix should be strengthened. However, it is not so easily done in practice: glass as well as the polymer polyolefinic matrix are rather inert chemically, inertia being one of the most important advantages of these composites. The adhesion ability of the low-cost polymers (polyethylene, polypropylene) to be preferably used as a matrix is not high either.


A rather effective solution to the problem was offered by the scientists from the Institute of Problems of Chemical Physics, Russian Academy of Sciences. They managed to chemically bond reinforcing glass fibers and the polymer matrix together, having initially modified fibre-glass surface and increased the surface concentration of silanol groups chemically reactive to finishing agents.

As a matter of fact, the authors have not so far succeeded in direct effective reaction between these two passive substances. But they have come up with the materials that could serve as binders between the polymer and glass. The scientists used special finishing substances, including silicon and titanium composites, as a kind of ‘bridges’. To increase the effectiveness of bonding these ‘agents’ to the fiber glass, the scientists learned to activate its surface.

To test the endurance of the materials received using new technology the authors applied all methods available: stretching, bending, breaking, etc. Some technological approaches proved to produce real leaders among fiber glass materials, in their category, of course.

So, the Chernogolovka fiber glass method is as follows. You should take manufactured fiber glass, activate it with acid, saturate it with special solution and add melted polymer. The resulting material will be several times more durable than its analogue produced through conventional technology. It will be much more rigid structurally and, in addition, more moisture-resistant. This means that products made of such fiber glass will have extended life and higher reliability.

There are other versions of technology though, each corresponding to a specific kind of polymer matrix. The authors do not disclose the details, these are being patented.

At the same time the scientists go on improving technology, examine structure and properties of new materials, and investigate alternative ways of bonding the polymer matrix to the fiber glass, for instance, radiation. But there is already one thing of which they are sure: the development of a diversity of new materials is nearing completion - those having no analogues either in Russia or abroad.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Materials Sciences:

nachricht Carnegie Mellon researchers create soft, flexible materials with enhanced properties
24.05.2019 | Carnegie Mellon University

nachricht Plumbene, graphene's latest cousin, realized on the 'nano water cube'
23.05.2019 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>