Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making plastic smarter with protein

24.03.2003


How do you improve on plastic, a modern material that has already changed the way we do everything from design medical devices to build cars? Embed it with specialized proteins called enzymes, says Shekhar Garde, assistant professor of chemical engineering at Rensselaer Polytechnic Institute.

"Such protein-enhanced plastics might someday be able to act as ultra-hygienic surfaces or sensors to detect the presence of various chemicals," says Garde. These types of materials could have a wide range of applications, for example, in the security or medical industries.

Proteins require water to function, however. Nonwatery environments do not provide the driving force necessary to keep proteins in their normally intricately folded state; unfolded, the molecules cease to function. To learn what it takes to successfully integrate proteins into a dry substance such as plastic, Garde and his graduate student Lu Yang use molecular dynamics (MD) simulations to create a computer model of the proteins and study the molecules in both watery and non-watery environments such as organic solvents. They are working in collaboration with Jonathan S. Dordick, the Howard P. Isermann ’42 Professor of Chemical Engineering, who conducted the initial protein research.



Garde and Yang are presenting their research at the 225th national meeting of the American Chemical Society, held March 23-27 in New Orleans, La.

Proteins Are Powerful, but Sensitive

Proteins are "molecular machines," according to Garde, uniquely able to efficiently and reliably conduct chemical processes. Their powerful activity, however, is limited to relatively low temperatures and pressures. Helping proteins adapt to a non-water-based environment may actually increase the resiliency of the molecules and make them useful in situations they otherwise would not survive in, such as exposure to high temperatures or other extreme conditions. In addition to preserving protein’s known actions, the researchers speculate that they may also "discover that proteins could perform some new functions [in dry environments], something that they could not do in water," according to Yang.


CONTACT: Jonathan Dordick 518-276-2899; dordick@rpi.edu Shekhar Garde 518-276-6048; gardes@rpi.edu

CONTACT (During the ACS meeting): The ACS press room 504-586-4650 (Morial Convention Center, room 280)


Joely Johnson | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
14.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>