Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model predicts birthplace of defect in a material

02.10.2002


Applications include nanotechnology, more



Defects such as cracks in a material are responsible for everything from malfunctioning microchips to earthquakes. Now MIT engineers have developed a model to predict a defect’s birthplace, its initial features and how it begins to advance through the material.
The model could be especially useful in nanotechnology. "As devices get smaller and smaller, understanding the phenomena of defect nucleation and growth becomes more and more important," said Subra Suresh, head of the Department of Materials Science and Engineering (DMSE). A seemingly minuscule dislocation--a local disorder in the arrangement of atoms inside a material--or a crack can drastically compromise the performance of a device.

"There has been much past work on defects in materials, but no one has really explained how a crack or void nucleates in the first place. This work is a first step to that end," said Suresh, an author of a paper on the work that appeared in a recent issue of Nature.



His coauthors are Ju Li (MIT Ph.D. 2000), now a professor at Ohio State University); Krystyn J. Van Vliet (MIT Ph.D. 2002), now a postdoctoral associate at Harvard University/Children’s Hospital until she joins the MIT faculty next year; Ting Zhu, a graduate student in mechanical engineering; and Sidney Yip, a professor in the Department of Nuclear Engineering and DMSE.

In a commentary published along with the Nature paper, Jonathan Zimmerman of Sandia National Laboratories wrote that the MIT researchers "have achieved a significant step towards understanding the defective world of materials in which we live."

Suresh noted that one of the challenges in materials science is showing a seamless transition from defects on the atomic or molecular scale to the overall performance at the engineering level. "We have not had a [good] handshake between the two," he said.

The model described in Nature provides predictive capabilities that transition smoothly across multiple length scales. "This approach can be used to not only predict nucleation of defects between atoms, but also shearing [slipping] between plates in the Earth, the phenomenon behind earthquakes," Van Vliet noted.

The model "captures many key features observed in experiments," continued Zimmerman in his commentary. As a result, Van Vliet said, "we can use it to make predictions about when and how defects will nucleate, rather than having to do experiments for each material or stress scenario."

In the Nature paper, the researchers also describe how atomic defects like a crack or dislocation--singularities seen on the continuum level--can develop from waves. "It’s like the life of a butterfly, proceeding in different stages," said Li.

The world is filled with invisible waves such as sound waves traveling through the air or shear waves through a solid. Under certain conditions, however, a wave can become unstable. From there, a defect can nucleate in four stages, said Li.

First, the amplitude of the wave grows. Slowly the wave steepens, similar to what happens to ocean waves as they approach the shore. In the third stage, part of the wave becomes so steep that it can no longer be described at the continuum level and must be transferred to an atomic description. In the fourth stage, the atomic-scale shockwave "gets trapped in the rough terrain of the microscopic energy landscape, resulting in a defect," Li said.

The MIT team stresses that the model "was not developed overnight." Rather, it’s based on many years of theory and experiments by myriad others. In addition, "we now have experimental and computational tools that until very recently did not exist," Suresh said. Such tools include the use of a soap-bubble raft as an atomic-scale model of metal structure to visualize defect nucleation (see http://web.mit.edu/newsoffice/nr/2001/bubbles.html), and experiments on metallic surfaces conducted using the equipment available in DMSE’s new NanoMechanical Technology Laboratory (http://web.mit.edu/newsoffice/nr/2002/nanolab.html).

Other key factors in the team’s success were the people involved and their diverse areas of expertise. "Today there are many problems that require these multidisciplinary efforts because they’re so complicated," Yip said. Perhaps most importantly, however, he stressed the researchers’ working relationship. "The great human chemistry in this group gives a really happy flavor to this story."

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Materials Sciences:

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

nachricht 3D-Printing: Support structures to prevent vibrations in post-processing of thin-walled parts
12.07.2018 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>