Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New iron-based and copper-oxide high-temperature

30.05.2008
NIST's neutron facilities reveal intriguing similarities

In the initial studies of a new class of high-temperature superconductors discovered earlier this year, research at the Commerce Department’s National Institute of Standards and Technology (NIST) has revealed that new iron-based superconductors share similar unusual magnetic properties with previously known superconducting copper-oxide materials. The research appears in the May 28 Advanced Online Publication of the journal Nature.

These superconductors may one day enable energy and environmental gains because they could significantly heighten the efficiency of transferring electricity over the electric grid or storing electricity in off-peak hours for later use.

“While we still do not understand how magnetism and superconductivity are related in copper-oxide superconductors,” explains NIST Fellow Jeffrey Lynn at the NIST Center for Neutron Research (NCNR), “our measurements show that the new iron-based materials share what seems to be a critical interplay between magnetism and superconductivity.”

The importance of magnetism to high-temperature superconductors is remarkable because magnetism strongly interferes with conventional low-temperature superconductors. “Only a few magnetic impurities in the low-temperature superconductors sap the superconducting properties away,” says Lynn.

By contrast, copper-oxide superconductors, discovered in 1986, tolerate higher magnetic fields at higher temperatures. The highest performance copper-oxide superconductors conduct electricity without resistance when cooled to "transition temperatures" below 140 Kelvin (-133 Celsius) and can simply and cheaply be cooled by liquid nitrogen to 77 Kelvin or (-196 Celsius).

Japanese researchers discovered earlier this year that a new class of iron-based superconducting materials also had much higher transition temperatures than the conventional low-temperature superconductors. The discovery sent physicists and materials scientists into a renewed frenzy of activity reminiscent of the excitement brought on by the discovery of the first high-temperature superconductors over 20 years ago.

Earlier work on the copper-oxide superconductors revealed that they consist of magnetically active copper-oxygen layers, separated by layers of non-magnetic materials. By “doping,” or adding different elements to the non-magnetic layers of this normally insulating material, researchers can manipulate the magnetism to achieve electrical conduction and then superconductivity.

The group of scientists studying the iron-based superconductors used the NCNR, a facility that uses intense beams of neutral particles called neutrons to probe the atomic and magnetic structure of the new material.

As neutrons probed the iron-based sample supplied by materials scientists in Beijing, they revealed a magnetism that is similar to that found in copper-oxide superconductors, that is, layers of magnetic moments—like many individual bar magnets—interspersed with layers of nonmagnetic material. Lynn notes that the layered atomic structure of the iron-based systems, like the copper-oxide materials, makes it unlikely that these similarities are an accident.

One of the exciting aspects of these new superconductors is that they belong to a comprehensive class of materials where many chemical substitutions are possible. This versatility is already opening up new research avenues to understand the origin of the superconductivity, and should also enable the superconducting properties to be tailored for commercial technologies.

Evelyn Brown | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht Proteins imaged in graphene liquid cell have higher radiation tolerance
10.12.2018 | INM - Leibniz-Institut für Neue Materialien gGmbH

nachricht High-temperature electronics? That's hot
07.12.2018 | Purdue University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>