Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry

27.05.2013
New knowledge for magnetic information technology

Researchers using Lorentz electron microscopy have shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

A research group including the NIMS Surface Physics and Structure Unit, Superconducting Properties Unit and others, using Lorentz electron microscopy, has shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

Dr. Masahiro Nagao, Researcher (also of Waseda University), Dr. Yeong-Gi So, Researcher (presently at University of Tokyo), Toru Hara, Principal Researcher, and Koji Kimoto, Unit Director, of the Surface Physics and Structure Unit, and Masaaki Isobe, Group Leader of the Superconducting Properties Unit, et al., National Institute for Materials Science (President: Sukekatsu Ushioda), have used Lorentz electron microscopy to show that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

The recently discovered magnetic vortex structures known as magnetic skyrmions have been shown to have very interesting and unprecedented properties, such as a very great anomalous Hall effect and skyrmion motion under ultra-low-density currents. They have raised hopes of their application as new magnetic elements. The formation of skyrmions is thought to require the application of a magnetic field to a magnet that does not have centrosymmetry.

However, it has now been shown for the first time by direct observation with Lorentz electron microscopy that nanomagnetic clusters spontaneously form skyrmion structures even in ferromagnetic manganese oxides where the crystal structures have centrosymmetry. This result suggests the possibility that skyrmion structures might be formed even in nanomagnetic clusters and nanoparticles of various ferromagnets that do not meet the conditions conventionally deemed necessary.

The skyrmions observed in this research indicate a phenomenon in which the magnetic vortex repeatedly inverts between clockwise and counterclockwise at a certain temperature because of thermal fluctuation. It was also found, moreover, that when two skyrmions come close together, they invert to the same vortex direction in synch with each other. This result would seem to provide new knowledge for the development of magnetic elements using the interaction between skyrmions.

The result also points to a method of determining the energy needed for inverting the magnetic vortex of individual nanomagnetic clusters by Lorentz electron microscope observation. This method could potentially be applied widely with nanomagnets and nanomagnetic devices for which it is difficult to determine the energy required for magnetic inversion by ordinary measurement.

Journal information
The findings were announced in Nature Nanotechnology on April 29, 2013

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/04/p201304290.html
http://www.researchsea.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>