Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material cleans and splits water

05.11.2018

Some of the most useful and versatile materials today are the metal-organic frameworks (MOFs). MOFs are a class of materials demonstrating structural versatility, high porosity, fascinating optical and electronic properties, all of which makes them promising candidates for a variety of applications, including gas capture and separation, sensors, and photocatalysis.

Because MOFs are so versatile in both their structural design and usefulness, material scientists are currently testing them in a number of chemical applications. One of these is photocatalysis, a process where a light-sensitive material is excited with light.


Simultaneous photocatalytic hydrogen generation and dye degradation using a visible light active metal-organic framework.

Credit: Alina-Stavroula Kampouri/EPFL

The absorbed excess energy dislocates electrons from their atomic orbits, leaving behind "electron holes". The generation of such electron-hole pairs is a crucial process in any light-dependent energy process, and, in this case, it allows the MOF to affect a variety of chemical reactions.

A team of scientists at EPFL Sion led by Kyriakos Stylianou at the Laboratory of Molecular Simulation, have now developed a MOF-based system that can perform not one, but two types of photocatalysis simultaneously: production of hydrogen, and cleaning pollutants out of water.

The material contains the abundantly available and cheap nickel phosphide (Ni2P), and was found to carry out efficient photocatalysis under visible light, which accounts to 44% of the solar spectrum.

The first type of photocatalysis, hydrogen production, involves a reaction called "water-splitting". Like the name suggests, the reaction divides water molecules into their constituents: hydrogen and oxygen. One of the bigger applications here is to use the hydrogen for fuel cells, which are energy-supply devices used in a variety of technologies today, including satellites and space shuttles.

The second type of photocatalysis is referred to as "organic pollutant degradation", which refers to processes breaking down pollutants present in water. The scientists investigated this innovative MOF-based photocatalytic system towards the degradation of the toxic dye rhodamine B, commonly used to simulate organic pollutants.

The scientists performed both tests in sequence, showing that the MOF-based photocatalytic system was able to integrate the photocatalytic generation of hydrogen with the degradation of rhodamine B in a single process.

This means that it is now possible to use this photocatalytic system to both clean pollutants out of water, while simultaneously producing hydrogen that can be used as a fuel.

"This noble-metal free photocatalytic system brings the field of photocatalysis a step closer to practical 'solar-driven' applications and showcases the great potential of MOFs in this field," says Kyriakos Stylianou.

###

Other contributors

University College London

Reference

Stavroula Kampouri, Tu N. Nguyen, Mariana Spodaryk, Robert G. Palgrave, Andreas Zu?ttel, Berend Smit, Kyriakos C. Stylianou. Concurrent Photocatalytic Hydrogen Generation and Dye Degradation Using MIL-125-NH2 under Visible Light Irradiation. Advanced Functional Materials 05 November 2018.

Media Contact

Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-932-105

 @EPFL_en

http://www.epfl.ch/index.en.html 

Nik Papageorgiou | EurekAlert!

More articles from Materials Sciences:

nachricht New approach improving stability and optical properties of perovskite films
14.02.2019 | City University of Hong Kong

nachricht Calculating correlated materials from first principles
14.02.2019 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>