Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature of Mott Transition Revealed

15.03.2012
Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (Mott transition).

Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (repulsive force between electrons) (Mott transition).


Spectral intensity distribution A(k,¦Ø)t of single-electron excitation near the Mott transition in a 2-dimensional Hubbard model. A large intensity area indicates a strong character as a normal electron. In the ordinate at the left, excitation energy ¦Ø is divided by the hopping strength t (>0). ¦Ø represents the excitation energy in electron-addition excitation for ¦Ø>0 and that in electron-subtraction excitation shown with a minus sign for ¦Ø<0. The abscissa shows the wave vector k. In the figure at the left, the right-hand panel shows the density of states of single electron excitation A(¦Ø)t. The figure at the right shows the distribution of spectral intensity for ¦Ø¡Ö0. Copyright : NIMS

Dr. Kohno also succeeded in explaining various anomalous behaviors observed in high temperature superconductors in a unified manner as features near the Mott transition. This research is a great advance toward elucidation of the mechanism of high temperature superconductivity.

Because superconductors transmit electricity with no resistance, they are considered key materials for solving environmental and energy problems. However, practical application has been limited by the low superconducting transition temperature of the superconductors obtained up to now. In order to obtain superconductors with higher transition temperatures, it is important to elucidate the mechanism of high temperature superconductivity. Since it is known that high temperature superconductivity is realized near the Mott transition, understanding the anomalous behaviors which occur near the Mott transition is considered to hold the key to elucidating the mechanism of high temperature superconductivity.

In insulators which occur due to the Mott transition (Mott insulators), spin and charge become decoupled, meaning that electron spin can move, but charge cannot move. This spin-charge separation in Mott insulators could not be treated accurately within the framework of conventional metal theory. In the present research, Dr. Kohno applied an analysis of exact solutions for a 1-dimensional system to numerical data obtained using a super computer, and found that 2-dimensional systems also display signs that the degrees of freedom of spin and charge separate toward the Mott transition, and this triggers anomalous behaviors near the Mott transition. Thus, the behaviors that had been thought to be anomalous under the conventional concept can be understood in a natural and unified manner by this new concept as features near the Mott transition in a simple model of a 2-dimensional system.

Although this research did not reach an elucidation of the mechanism of high temperature superconductivity, it opens the way to elucidation by solving the mystery of anomalous behavior, which had been the greatest problem in research on high temperature superconductivity.

This research result was obtained as part of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grants-in-Aid for Scientific Research, Basic Research (C) “Research on Electronic States Near Mott Transition” (Research Representative: Masanori Kohno), Grant-in-Aid, Special Area “Novel States of Matter Induced by Frustration” (Area Representative: Prof. Hikaru Kawamura, Osaka University), and the World Premier International Research Center Initiative (WPI) International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono). The NIMS super computer was used in numerical calculations. This achievement will be announced on February 15 in the online edition of Physical Review Letters, which is a publication of the American Physical Society.

For more details contact:

Masanori Kohno
MANA, NIMS
TEL: +81-29-860-4899
E-Mail: KOHNO.Masanori@nims.go.jp

For general enquiries:

NIMS Public Relations Office
TEL: +81-29-859-2026
FAX: +81-29-859-2017
E-Mail: pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht KIST researchers develop high-capacity EV battery materials that double driving range
24.02.2020 | National Research Council of Science & Technology

nachricht OrganoPor: Bio-Based Boards for A Thermal Insulation Composite System
21.02.2020 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>