Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature of Mott Transition Revealed

15.03.2012
Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (Mott transition).

Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (repulsive force between electrons) (Mott transition).


Spectral intensity distribution A(k,¦Ø)t of single-electron excitation near the Mott transition in a 2-dimensional Hubbard model. A large intensity area indicates a strong character as a normal electron. In the ordinate at the left, excitation energy ¦Ø is divided by the hopping strength t (>0). ¦Ø represents the excitation energy in electron-addition excitation for ¦Ø>0 and that in electron-subtraction excitation shown with a minus sign for ¦Ø<0. The abscissa shows the wave vector k. In the figure at the left, the right-hand panel shows the density of states of single electron excitation A(¦Ø)t. The figure at the right shows the distribution of spectral intensity for ¦Ø¡Ö0. Copyright : NIMS

Dr. Kohno also succeeded in explaining various anomalous behaviors observed in high temperature superconductors in a unified manner as features near the Mott transition. This research is a great advance toward elucidation of the mechanism of high temperature superconductivity.

Because superconductors transmit electricity with no resistance, they are considered key materials for solving environmental and energy problems. However, practical application has been limited by the low superconducting transition temperature of the superconductors obtained up to now. In order to obtain superconductors with higher transition temperatures, it is important to elucidate the mechanism of high temperature superconductivity. Since it is known that high temperature superconductivity is realized near the Mott transition, understanding the anomalous behaviors which occur near the Mott transition is considered to hold the key to elucidating the mechanism of high temperature superconductivity.

In insulators which occur due to the Mott transition (Mott insulators), spin and charge become decoupled, meaning that electron spin can move, but charge cannot move. This spin-charge separation in Mott insulators could not be treated accurately within the framework of conventional metal theory. In the present research, Dr. Kohno applied an analysis of exact solutions for a 1-dimensional system to numerical data obtained using a super computer, and found that 2-dimensional systems also display signs that the degrees of freedom of spin and charge separate toward the Mott transition, and this triggers anomalous behaviors near the Mott transition. Thus, the behaviors that had been thought to be anomalous under the conventional concept can be understood in a natural and unified manner by this new concept as features near the Mott transition in a simple model of a 2-dimensional system.

Although this research did not reach an elucidation of the mechanism of high temperature superconductivity, it opens the way to elucidation by solving the mystery of anomalous behavior, which had been the greatest problem in research on high temperature superconductivity.

This research result was obtained as part of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grants-in-Aid for Scientific Research, Basic Research (C) “Research on Electronic States Near Mott Transition” (Research Representative: Masanori Kohno), Grant-in-Aid, Special Area “Novel States of Matter Induced by Frustration” (Area Representative: Prof. Hikaru Kawamura, Osaka University), and the World Premier International Research Center Initiative (WPI) International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono). The NIMS super computer was used in numerical calculations. This achievement will be announced on February 15 in the online edition of Physical Review Letters, which is a publication of the American Physical Society.

For more details contact:

Masanori Kohno
MANA, NIMS
TEL: +81-29-860-4899
E-Mail: KOHNO.Masanori@nims.go.jp

For general enquiries:

NIMS Public Relations Office
TEL: +81-29-859-2026
FAX: +81-29-859-2017
E-Mail: pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht From foam to bone: Plant cellulose can pave the way for healthy bone implants
19.03.2019 | University of British Columbia

nachricht Additive printing processes for flexible touchscreens: increased materials and cost efficiency
19.03.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>