Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature of Mott Transition Revealed

15.03.2012
Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (Mott transition).

Dr. Masanori Kohno, a MANA Scientist at the International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), theoretically clarified the nature of the metal-insulator transition due to electronic correlation (repulsive force between electrons) (Mott transition).


Spectral intensity distribution A(k,¦Ø)t of single-electron excitation near the Mott transition in a 2-dimensional Hubbard model. A large intensity area indicates a strong character as a normal electron. In the ordinate at the left, excitation energy ¦Ø is divided by the hopping strength t (>0). ¦Ø represents the excitation energy in electron-addition excitation for ¦Ø>0 and that in electron-subtraction excitation shown with a minus sign for ¦Ø<0. The abscissa shows the wave vector k. In the figure at the left, the right-hand panel shows the density of states of single electron excitation A(¦Ø)t. The figure at the right shows the distribution of spectral intensity for ¦Ø¡Ö0. Copyright : NIMS

Dr. Kohno also succeeded in explaining various anomalous behaviors observed in high temperature superconductors in a unified manner as features near the Mott transition. This research is a great advance toward elucidation of the mechanism of high temperature superconductivity.

Because superconductors transmit electricity with no resistance, they are considered key materials for solving environmental and energy problems. However, practical application has been limited by the low superconducting transition temperature of the superconductors obtained up to now. In order to obtain superconductors with higher transition temperatures, it is important to elucidate the mechanism of high temperature superconductivity. Since it is known that high temperature superconductivity is realized near the Mott transition, understanding the anomalous behaviors which occur near the Mott transition is considered to hold the key to elucidating the mechanism of high temperature superconductivity.

In insulators which occur due to the Mott transition (Mott insulators), spin and charge become decoupled, meaning that electron spin can move, but charge cannot move. This spin-charge separation in Mott insulators could not be treated accurately within the framework of conventional metal theory. In the present research, Dr. Kohno applied an analysis of exact solutions for a 1-dimensional system to numerical data obtained using a super computer, and found that 2-dimensional systems also display signs that the degrees of freedom of spin and charge separate toward the Mott transition, and this triggers anomalous behaviors near the Mott transition. Thus, the behaviors that had been thought to be anomalous under the conventional concept can be understood in a natural and unified manner by this new concept as features near the Mott transition in a simple model of a 2-dimensional system.

Although this research did not reach an elucidation of the mechanism of high temperature superconductivity, it opens the way to elucidation by solving the mystery of anomalous behavior, which had been the greatest problem in research on high temperature superconductivity.

This research result was obtained as part of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grants-in-Aid for Scientific Research, Basic Research (C) “Research on Electronic States Near Mott Transition” (Research Representative: Masanori Kohno), Grant-in-Aid, Special Area “Novel States of Matter Induced by Frustration” (Area Representative: Prof. Hikaru Kawamura, Osaka University), and the World Premier International Research Center Initiative (WPI) International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono). The NIMS super computer was used in numerical calculations. This achievement will be announced on February 15 in the online edition of Physical Review Letters, which is a publication of the American Physical Society.

For more details contact:

Masanori Kohno
MANA, NIMS
TEL: +81-29-860-4899
E-Mail: KOHNO.Masanori@nims.go.jp

For general enquiries:

NIMS Public Relations Office
TEL: +81-29-859-2026
FAX: +81-29-859-2017
E-Mail: pr@nims.go.jp

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Goodbye, silicon? On the way to new electronic materials with metal-organic networks
17.10.2018 | Max-Planck-Institut für Polymerforschung

nachricht High entropy alloys hold the key to studying dislocation avalanches in metals
16.10.2018 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>