Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnesium magnificent for plasmonic applications

23.05.2018

Rice University, University of Cambridge synthesize and test nanoparticles of abundant material

Rice University researchers have synthesized and isolated plasmonic magnesium nanoparticles that show all the promise of their gold, silver and aluminum cousins with none of the drawbacks.


Protective oxide layers (red) coat magnesium (green) nanoparticles created by scientists at Rice University. The nanoparticles show plasmonic properties across the infrared, visible and ultraviolet spectrum.

Credit: Ringe Group/Rice University

Usage Restrictions: For news reporting purposes only.


Calculated (left) and matching experimental (right) images show the intensity of the plasmonic behavior of magnesium nanoparticles created at Rice University. The nanoparticles show promise for chemical and biological sensors, photocatalysts and medical applications.

Credit: Ringe Group/Rice University

Usage Restrictions: For news reporting purposes only.

The Rice lab of materials scientist Emilie Ringe produced the particles to test their ability to emit plasmons, the ghostly electron bands that, when triggered by energy from outside, ripple across the surface of certain metals.

The research appears in the American Chemical Society journal Nano Letters.

Plasmonic materials are valuable because they can concentrate light and squeeze its power in nanoscale volumes, a useful property for chemical and biological sensors. They can also be used as photocatalysts and for medical applications in which they can, for instance, target cancer cells and be triggered to emit heat to destroy them.

But gold and silver are expensive. "They're just not affordable if you're trying to do cheap things on a very large scale, like industrial catalysis," said Ringe, an assistant professor of materials science and nanoengineering and of chemistry at Rice.

"We've been really excited about aluminum, because it's one of the only Earth-abundant plasmonic materials, but it has a critical flaw," she said. "Its intrinsic properties mean it is a good plasmonic in the ultraviolet range, but not as good in the visible and poor in the infrared. That's not so great it you want to do photocatalysis with the sun."

Those limitations set the stage for the Ringe lab's investigation of also-abundant magnesium. "It can resonate across the infrared, visible and ultraviolet ranges," she said. "People have been talking about it, but no one's really been able to make and look at the optical properties of single crystals of magnesium."

Attempts by other labs to fabricate magnesium structures proved difficult and produced nanoparticles with poor crystallinity, so Ringe and co-authors John Biggins of the University of Cambridge, England, and Rice postdoctoral fellow Sadegh Yazdi combined their talents in chemistry, spectroscopy and theory to synthesize nanocrystals in liquid and analyze them with Rice's powerful electron microscope.

What they produced were nanoscale crystals that perfectly reflected the hexagonal nature of their underlying lattice. "This gives us an opportunity," she said. "Silver, gold and aluminum, all the metals we're used to working with at the nanoscale, are face-centered cubic materials. You can make cubes and rods and things that have the symmetry of the underlying structure.

"But magnesium has a hexagonal lattice," Ringe said. "The atoms are packed differently, so we're able to make shapes we physically cannot make with a face-centered cubic metal. We're really excited about the possibilities because it means we can make new shapes - or at least shapes that are not typical of nanoparticles. And new shapes mean new properties."

The particles proved to be unexpectedly robust, she said. The lab began by mixing a magnesium precursor with lithium and naphthalene, creating a powerful free radical that could reduce an organometallic magnesium precursor to magnesium metal. The resulting particles were hexagonal plates that ranged in size from 100 to 300 nanometers with a thickness between 30 and 60 nanometers.

Like bulk magnesium, they found that a self-limiting oxide layer formed around the magnesium that protected it from further oxidation without changing the material's plasmonic properties. That helped preserve the particles' characteristic shape, which remained stable even three months after synthesis and several weeks in air, Ringe said.

"It's formidably air-stable," she said. "At the start, we took all the precautions we could, using a glove box for every transfer of sample, and at the end of the day we decided to just leave a sample out in the air, just to see. We tested it after two weeks, and it was still the same.

"We tried that a bit too late, to be honest," Ringe said. "We could have saved time if we'd just started with that!"

The next step will be to enhance the particles with binding molecules that will help them change their shapes, which also tunes their plasmonic response. She expects that will take another year of work.

"The key point is that this is going to be a tool in the plasmonics toolbox that can do things none of the other metals can do," Ringe said. "No other metal is cheap and can resonate across the entire spectrum. And it can be made, essentially, in a beaker."

###

Biggins is a university lecturer in applied mechanics at the University of Cambridge. The research was supported by a 3M Non-Tenured Faculty Award, the American Chemical Society Petroleum Research Fund and the Binational Science Foundation.

Read the abstract at https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b00955.

This news release can be found online at http://news.rice.edu/2018/05/22/magnesium-magnificent-for-plasmonic-applications/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Ringe Group: http://ringegroup.rice.edu

Biggins Group: https://www.tcm.phy.cam.ac.uk/~jsb56/index.html

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Chemical Society Magnesium Nanoparticles crystals nanometers nanoscale ultraviolet

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>