Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It's a trap!

29.03.2018

When a solar cell absorbs a photon of light, it starts an electronic race against time. Two particles -- a negatively charged electron and positively charged "hole" -- generate electricity if they fully separate.

However, when these particles become trapped within a solar material before they can fully separate, it can diminish the ability of the material to convert light into electricity.


Argonne researchers helped identify the process by which holes get trapped in nanoparticles made of zinc oxide, a material of potential interest for solar applications because it absorbs ultraviolet light.

Credit: Image by Christopher Milne

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have published a new study that identifies the process by which holes get trapped in nanoparticles made of zinc oxide, a material of potential interest for solar applications because it absorbs ultraviolet light.

"If you are making a solar cell, you want to avoid trapping holes; but if you're making a photocatalyst, you want to trap them." -- X-ray scientist Christopher Milne of Switzerland's Paul Scherrer Institute.

... more about:
»Nanoparticles »X-ray »solar cell »spectroscopy »trap »zinc

Using X-rays produced by Argonne's Advanced Photon Source (APS), the researchers were able to see the trapping of holes in specific regions of the nanoparticle. This represents a notable advance, as previous experiments were able to detect the migration and trapping of electrons but not holes.

According to Stephen Southworth, an author of the study, some have considered zinc oxide as a possible alternative to titanium dioxide, the most commonly used photovoltaic material. Understanding the hole trapping behavior is necessary to evaluate the viability of the material in solar energy applications, he said.

Although hole trapping impairs the performance of photovoltaic devices, it can improve the ability of zinc oxide to act as a photocatalyst, as positive charges stored in the traps within the material can go on to act as participants in chemical reactions.

"If you are making a solar cell, you want to avoid trapping holes; but if you're making a photocatalyst, you want to trap them," said project lead Christopher Milne, an X-ray scientist at the Paul Scherrer Institute in Switzerland. "Regardless, understanding how these atoms get trapped -- and for how long -- is crucially important for making functional materials that convert light into usable energy."

The researchers determined that the holes became trapped in "oxygen vacancies" -- places within the crystal lattice where an oxygen atom is missing. Zinc oxide, Milne said, has a crystalline structure that allows it to have many of these vacancies. The trapping happens because the vacancies have a lower energy level than the surrounding environment, creating an energetic crevasse for passing holes.

To make their measurements, the researchers combined two different X-ray techniques: X-ray absorption spectroscopy and resonant X-ray emission spectroscopy. "Combining these techniques is uniquely possible with the setup we have at the APS, giving us a view that shows us both the atomic geometry and the electronic structure of the material," said Argonne X-ray physicist Gilles Doumy, an author of the study, which used the 7ID-D beamline at the APS.

"APS was one of the only places in the world we could have done this experiment. It was a very fruitful collaboration," said Milne. The APS is a DOE Office of Science User Facility.

The researchers indicated that future studies of the system could benefit from having the ability to take extremely quick snapshots of the trapping behavior. Such an experiment could be conducted at X-ray free-electron laser facilities like SLAC's Linac Coherent Light Source, also a DOE Office of Science User Facility.

"Essentially, we want to see the same process but have the ability to take images a thousand times faster," said Southworth.

"The functionality of the material is always going to rely on how behavior at early times in the process influences the behavior at later and longer times," added Doumy. "We need both pictures for a comprehensive understanding."

###

An article based on the research, "Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy," appeared in the February 2 online issue of Nature Communications. Argonne physicist Anne Marie March also co-wrote the paper.

The work was sponsored, in part, by the DOE's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Jared Sagoff
jsagoff@anl.gov
630-252-5549

 @argonne

http://www.anl.gov 

Jared Sagoff | EurekAlert!
Further information:
http://www.anl.gov/articles/it-s-trap
http://dx.doi.org/10.1038/s41467-018-02870-4

Further reports about: Nanoparticles X-ray solar cell spectroscopy trap zinc

More articles from Materials Sciences:

nachricht Scientists develop low-cost energy-efficient materials
24.04.2019 | National University of Science and Technology MISIS

nachricht Modified 'white graphene' for eco-friendly energy
23.04.2019 | Tomsk Polytechnic University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>