Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


It's a trap!


When a solar cell absorbs a photon of light, it starts an electronic race against time. Two particles -- a negatively charged electron and positively charged "hole" -- generate electricity if they fully separate.

However, when these particles become trapped within a solar material before they can fully separate, it can diminish the ability of the material to convert light into electricity.

Argonne researchers helped identify the process by which holes get trapped in nanoparticles made of zinc oxide, a material of potential interest for solar applications because it absorbs ultraviolet light.

Credit: Image by Christopher Milne

Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have published a new study that identifies the process by which holes get trapped in nanoparticles made of zinc oxide, a material of potential interest for solar applications because it absorbs ultraviolet light.

"If you are making a solar cell, you want to avoid trapping holes; but if you're making a photocatalyst, you want to trap them." -- X-ray scientist Christopher Milne of Switzerland's Paul Scherrer Institute.

... more about:
»Nanoparticles »X-ray »solar cell »spectroscopy »trap »zinc

Using X-rays produced by Argonne's Advanced Photon Source (APS), the researchers were able to see the trapping of holes in specific regions of the nanoparticle. This represents a notable advance, as previous experiments were able to detect the migration and trapping of electrons but not holes.

According to Stephen Southworth, an author of the study, some have considered zinc oxide as a possible alternative to titanium dioxide, the most commonly used photovoltaic material. Understanding the hole trapping behavior is necessary to evaluate the viability of the material in solar energy applications, he said.

Although hole trapping impairs the performance of photovoltaic devices, it can improve the ability of zinc oxide to act as a photocatalyst, as positive charges stored in the traps within the material can go on to act as participants in chemical reactions.

"If you are making a solar cell, you want to avoid trapping holes; but if you're making a photocatalyst, you want to trap them," said project lead Christopher Milne, an X-ray scientist at the Paul Scherrer Institute in Switzerland. "Regardless, understanding how these atoms get trapped -- and for how long -- is crucially important for making functional materials that convert light into usable energy."

The researchers determined that the holes became trapped in "oxygen vacancies" -- places within the crystal lattice where an oxygen atom is missing. Zinc oxide, Milne said, has a crystalline structure that allows it to have many of these vacancies. The trapping happens because the vacancies have a lower energy level than the surrounding environment, creating an energetic crevasse for passing holes.

To make their measurements, the researchers combined two different X-ray techniques: X-ray absorption spectroscopy and resonant X-ray emission spectroscopy. "Combining these techniques is uniquely possible with the setup we have at the APS, giving us a view that shows us both the atomic geometry and the electronic structure of the material," said Argonne X-ray physicist Gilles Doumy, an author of the study, which used the 7ID-D beamline at the APS.

"APS was one of the only places in the world we could have done this experiment. It was a very fruitful collaboration," said Milne. The APS is a DOE Office of Science User Facility.

The researchers indicated that future studies of the system could benefit from having the ability to take extremely quick snapshots of the trapping behavior. Such an experiment could be conducted at X-ray free-electron laser facilities like SLAC's Linac Coherent Light Source, also a DOE Office of Science User Facility.

"Essentially, we want to see the same process but have the ability to take images a thousand times faster," said Southworth.

"The functionality of the material is always going to rely on how behavior at early times in the process influences the behavior at later and longer times," added Doumy. "We need both pictures for a comprehensive understanding."


An article based on the research, "Revealing hole trapping in zinc oxide nanoparticles by time-resolved X-ray spectroscopy," appeared in the February 2 online issue of Nature Communications. Argonne physicist Anne Marie March also co-wrote the paper.

The work was sponsored, in part, by the DOE's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Jared Sagoff


Jared Sagoff | EurekAlert!
Further information:

Further reports about: Nanoparticles X-ray solar cell spectroscopy trap zinc

More articles from Materials Sciences:

nachricht Turning up the heat to create new nanostructured metals
21.11.2019 | DOE/Brookhaven National Laboratory

nachricht Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes
20.11.2019 | Max-Planck-Institut für Polymerforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Latest News

Designer lens helps see the big picture

21.11.2019 | Interdisciplinary Research

Machine learning microscope adapts lighting to improve diagnosis

21.11.2019 | Life Sciences

Soft skin-like robots you can put in your pocket

21.11.2019 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>