Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative concept for knee cartilage treatment

09.10.2013
Researchers have developed a material that can be used for the controlled release of a substance when subjected to cyclic mechanical loading. This work, carried out within the context of the National Research Programme “Smart Materials” (NRP 62), offers a potential treatment method for specific tissues such as knee cartilage.

In order to regenerate, knee cartilage, paradoxically, needs to be placed under mechanical stress, as happens whenever we take a step and our knees take our weight. When stimulated in this way, the cartilage cells develop receptors that are sensitive to the growth factors produced by the organism.

It is also at this very moment that they would be most receptive to medication. Working on this basis, Dominique Pioletti and Harm-Anton Klok from EPF Lausanne have developed a smart material that only releases a substance when the material is mechanically loaded.

Threshold effect
As they describe in a recent publication (*), their material takes the form of a hydrogel matrix, liposome-type nanoparticles and, finally, a payload – in this case a dye. When subjected to cyclic mechanical loading, the hydrogel matrix heats up. Once subjected to heat, the diameter of the liposomes shrinks significantly. This frees up space in the matrix, increasing its permeability and facilitating the release of the dye from the matrix. “One of the main difficulties has been the development of nanoparticles that respond to our specification,” explains Dominique Pioletti. “Basically, for the concept to work, their response to the heating process must have a very clear threshold between the two to three degrees that separate the static and stimulated states.”

The researchers then wanted to verify that it was actually the heating process resulting from the repetition of the mechanical loading that caused the dye to be released. During an initial experiment, the material was subjected to cyclic mechanical loading but the heat produced was evacuated in order to prevent any local temperature increase in the material. “This test enabled us to exclude a sponge-type function, whereby the dye was only being released as a result of the pressure,” explains Dominique Pioletti. During a second experiment, the nanoparticles were removed. The matrix heated up as expected due to the cyclic mechanical loading but none of the dye was released. The researchers concluded that the three elements of the composite material were required for the system as a whole to function as intended.

Long-term prospects
Whilst the researchers have been able to demonstrate the validity of their concept, Dominique Pioletti stresses that a future treatment is still a long way off. “First of all we need to develop a hydrogel and nanoparticles that are safe and biodegradable, before progressing to clinical trials. And, above all, we need to find partners interested in investing in our project.”
National Research Programme “Smart Materials” (NRP 62)
NRP 62 is a cooperation programme between the Swiss National Science Foundation (SNSF) and the Innovation Promotion Agency (CTI). The programme's aim is not only to promote scientific excellence but also to promote the successful industrial exploitation of smart materials and their application. NRP 62 also strives to link up the available skills and resources of various research institutions in Switzerland. The research work provides the technologies required to develop smart materials and the structures needed to integrate these. Having started its second phase at the beginning of 2013, NRP 62 now consists of 14 projects whose funding has been continued thanks to their high potential for practical application. NRP 62 will come to an end in 2015.
(*)Mohamadreza Nassajian Moghadam, Vitaliy Kolesov, Arne Vogel, Harm-Anton Klok and Dominique P. Pioletti (2013). Controlled release from a mechanically-stimulated thermosensitive self-heating composite hydrogel. Biomaterials online: doi: 10.1016/j.biomaterials.2013.09.065

(available in pdf format from the SNSF to media representatives only: com@snf.ch)

Contact
Prof. Dominique P. Pioletti
Laboratory of Biomechanical Orthopedics
EPFL
CH-1015 Lausanne
Phone: +41 21 693 83 41
E-mail: dominique.pioletti@epfl.ch
http://lbo.epfl.ch

Abteilung Kommunikation | idw
Further information:
http://www.nrp62.ch
http://www.snf.ch/F/medias/communiques

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>