Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Garafolo tests spacecraft seal to verify computer models

08.03.2012
Previous seal studies relied heavily on 'intuition and costly experiments'

An Akron researcher is designing computer prediction models to test potential new docking seals that will better preserve breathable cabin air for astronauts living aboard the International Space Station and other NASA spacecraft.

Garafolo recently analyzed a two-piece elastic silicone – or elastomer – seal, using the IBM 1350 Glenn computer cluster at the Ohio Supercomputer Center (OSC). His model simulated air leakage through the elastomer, taking into account the effects of gas compressibility and variable permeability.

"Recent advances in both analytical and computational permeation evaluations in elastomer space seals offer the ability to predict the leakage of space seals," said Nicholas Garafolo, Ph.D., a research assistant professor in the College of Engineering at The University of Akron (UA). "Up until recently, the design of state-of-the-art space seals has relied heavily on intuition and costly experimental evaluations. My research evaluated the performance of the compressible permeation approach on a space seal candidate."

Garafolo serves on a research team tasked with testing polymer/metal seals being considered for future advanced docking and berthing systems. The university researchers work with partners in Cleveland, Ohio, at NASA's Glenn Research Center, which is responsible for developing the main interface seals for the new International Low Impact Docking System (iLIDS).

"For many years, Ohio industry has invested heavily in the aviation, aerospace and manufacturing sectors, which naturally led OSC to focus a portion of its computational resources on the field of advanced materials," said Ashok Krishnamurthy, interim co-executive director of the center. "Dr. Garafolo's work is an excellent example of how modeling and simulation often allows scientists to analyze materials in ways not possible through simple observation or physical experimentation."

NASA has been developing low-impact docking seals for manned missions to the International Space Station, as well as for future exploratory missions. Common to all docking systems, a main interface seal is mated to a metallic flange to provide the gas pressure seal.

"The two-piece seal system, for which experimental studies of seal performance are well documented, utilizes two elastomer bulbs, connected with a web and retained with a separate metallic ring," Garafolo explained. "Baseline referent leak rate experiments were performed with a multitude of pressure differentials. The prediction method consisted of a computational analysis of referent geometry with temperature and pressure boundary conditions."

To establish an analytical understanding of space seal leakage and construct their computational prediction tool, Garafolo and his colleagues modeled how air leaked into and through the elastomer seal, while taking into account the effects of gas compressibility and the variability of permeation on air pressure. The research team's first evaluations showed significant correlations between the experimental values and the computer modeled results.

For pressure differentials near operating conditions, the leak rates determined by the model accurately reflected the experimental results, within the bounds of uncertainty. For pressure differentials exceeding normal operating conditions, the differences between the experimental results and computational numbers were not quite as close, as expected. The larger differences in the leak rates, however, were attributed to extrapolation errors of the model parameters.

Garafolo and colleague Christopher C. Daniels, Ph.D., UA associate research professor in the College of Engineering, authored the paper, "An Evaluation of the Compressible Permeation Approach for Elastomeric Space Seals." It recently was published in the proceedings of the 50th Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, held in Nashville, Tenn., in January. The study was based upon work supported by NASA and through an allocation of computing time from OSC.

Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Materials Sciences:

nachricht Understanding high efficiency of deep ultraviolet LEDs
22.02.2019 | Tohoku University

nachricht Large-scale window material developed for PM2.5 capture and light tuning
18.02.2019 | University of Science and Technology of China

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>