Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Spider Silk

15.11.2013
Spider silk fibers are very light, extremely tough and highly stretchable. This makes them interest-ing for industrial applications. Researchers at the Biocenter of the University of Würzburg have now discovered new details about the proteins of which spider silk consists.

Spider webs are made from a fascinating material. The eight-legged critters produce it in the silk glands on their abdomen from special proteins, which are spun into long threads. This can be done extremely fast: For a quick descent, for instance, they extrude the silk threads with a speed of up to one meter per second.


A garden spider pulls silk threads with its legs from the spinnerets on the abdomen.
(Photo: Manfred Schwedler)


The rapid production of silk threads in spiders involves unusual electrostatic interactions between the proteins.

(Graphics: Hannes Neuweiler)

However, the silk-spinning speed of the spiders is not the only impressive thing – the intrinsic properties of the material are no less astonishing: "Taking into account its lightness in a weight-for-weight comparison, a spider's dragline or the framework thread of a web is tougher than steel or even than the high-tech fiber Kevlar," explains Hannes Neuweiler at the Biocenter of the University of Würzburg.

Spider silk: many possible applications

It's no wonder that scientists and engineers try to emulate the production of spider silk technologi-cally in research laboratories and industrial facilities. There are many conceivable applications, rang-ing from novel fibers for high-performing textiles to innovative materials for vehicle construction or medical technology. Spider silk has the additional advantage of being biologically compatible with the human body and it is completely biodegradable.

"From a technological perspective, the production of spider silk works quite well already. So far, however, the outstanding mechanical properties of natural spider silk have not been attained in this way," says biotechnologist Neuweiler. And he knows a reason for this: We still do not understand the molecular mechanisms in the natural spinning process well enough to imitate them perfectly.

The dynamics of the spinning process shown

What the Würzburg researcher finds particularly fascinating about the spinning process is the speed with which individual protein molecules in the spider arrange themselves into long threads. He examined this aspect in greater detail – after all, his research team specializes in the visualization of protein dynamics. This research requires the application of special optical methods.

Neuweiler and his associates have now analyzed a certain section of a silk protein from the nursery web spider Euprosthenops australis. "This section is very interesting, because it connects the termi-nal areas of the proteins that link to form silk threads," says Neuweiler.

The presence of salt does not affect the speed of the protein linkage

The result is published in the journal "Nature Communications": The observed section links the proteins 1000 times faster than is usual in common protein-protein interactions. In addition, there is another striking feature: The presence of salts does not slow down the process, which is generally the case in such fast protein interactions. The researchers explain this phenomenon with an electrical particularity of the examined protein section, namely its peculiar dipole-dipole interactions.

"With the silk production of spiders, evolution seems to have found a way of greatly accelerating the association of proteins even in the presence of physiological concentrations of salt," explains Neuweiler. This is necessary because the silk gland contains several varieties of salts at the end of the spinning duct, where the silk protein fibers are generated, which salts play some role in the spinning process. Their precise function, however, is still poorly understood.

Further exploration of the phenomenon

The Würzburg biotechnologists are now scrutinizing this "salt resistance" further. Next, the researchers are going to determine whether this phenomenon also occurs with other spider silk proteins in other types of silk glands, as spiders have up to seven such silk glands in their abdomen, with which they can produce different kinds of silk.

Publication

The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening, Nature Communications, 2013, November 15, DOI 10.1038/ncomms3815

Contact person

Dr. Hannes Neuweiler, Department for Biotechnology and Biophysics, Biocenter at the University of Würzburg, T +49 (0)931 31-83872, hannes.neuweiler@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht Epoxy compound gets a graphene bump
14.11.2018 | Rice University

nachricht Automated adhesive film placement and stringer integration for aircraft manufacture
15.11.2018 | Fraunhofer IFAM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>