Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design and validation of world-class multilayered thermal emitter using machine learning

15.03.2019

Selection of an optimum structure from approximately eight billion candidates may make society more energy efficient

NIMS, the University of Tokyo, Niigata University and RIKEN jointly designed a multilayered metamaterial that realizes ultra-narrowband wavelength-selective thermal emission by combining the machine learning (Bayesian optimization) and thermal emission properties calculations (electromagnetic calculation).


Schematic diagram showing the materials informatics method combining machine learning and the calculation of thermal emission properties and experiments conducted to verify the performance of fabricated materials.

Credit: NIMS

The joint team then experimentally fabricated the designed metamaterial and verified the performance. These results may facilitate the development of highly efficient energy devices.

Thermal radiation, a phenomenon that an object emits heat as electromagnetic waves, is potentially applicable to a variety of energy devices, such as wavelength-selective heaters, infrared sensors and thermophotovoltaic generators. Highly efficient thermal emitters need to exhibit emission spectrum with narrow bands in practically usable wavelength range.

The development of such efficient thermal emitters has been targeted by many researches using metamaterials that can manipulate electromagnetic waves. However, most of them have taken an approach of characterizing the material structures selected empirically. , it has been difficult to identify the optimum structure from a vast number of candidates.

The joint research group developed a method of designing metamaterial structures with optimum thermal radiation performance using a combination of machine learning and the calculation of thermal emission properties. This project focused on easy-to-fabricate multilayered metamaterial structures composed of three types of materials in 18 layers of varying thickness.

Application of this method to about eight billion candidate structures led to the prediction that a nanostructure composed of non-periodically arranged semiconductor and dielectric materials would have superior thermal radiation performance, which was contrary to the conventional knowledge.

Then the research group actually fabricated the metamaterial structure and measured its thermal emission spectrum, and consequently demonstrated an extremely narrow thermal emission band.

Measured in terms of the Q-factor (a parameter used to measure the width of thermal emission spectral bands), the newly designed nanostructure produced a Q-factor close to 200, when 100 had been considered the upper limit for conventional materials?an exceptionally narrow thermal emission spectral band.

This research demonstrated the effectiveness of machine learning in developing highly efficient thermal emission metamaterials. The development of metamaterials with desirable thermal emission spectra is expected to facilitate more efficient energy use throughout the society. Because the nanostructure design method developed is applicable to all kinds of materials, it may serve as an effective tool for the design of high-performance materials in the future.

###

This research project was carried out by a research group led by Junichiro Shiomi (Professor, Department of Mechanical Engineering, The University of Tokyo) Atsushi Sakurai (Associated Professor, Department of Mechanical and Production Engineering, Niigata University) and Koji Tsuda (Professor, Graduate School of Frontier Sciences, The University of Tokyo). The part of this project conducted at the CMI2 (Center for Materials Research by Information Integration) was supported by the JST "Materials Research by Information Integration" Initiative (MI2I), while the remainder of this project, conducted at the RIKEN Center for Advanced Intelligence Project (AIP), was supported by funding from MEXT.

This study was published in ACS Central Science, an online U.S. journal, as an "ASAP article" on January 22, 2019, Eastern Standard Time.

###

Contacts

(Regarding this research)

Junichiro Shiomi
Professor, Department of Mechanical Engineering, The University of Tokyo;
Special Researcher, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science;
Visiting Scientist, RIKEN Center for Advanced Intelligence Project
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Tel: +81-3-5841-6283, Fax: +81-3-5841-0440
Email: shiomi@photon.t.u-tokyo.ac.jp

Atsushi Sakurai
Associate Professor, Department of Mechanical and Production Engineering, Niigata University;
Special Researcher, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
Tel: +81-25-262-7004, Fax: +81-25-262-7004
Email: sakurai@eng.niigata-u.ac.jp

(Regarding JST projects)

COI Group
Department of Innovation Platform
Japan Science and Technology Agency
K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-8666, Japan
Tel: +81-3-6267-4752, Fax: +81-3-5214-8496
Email: ihub@jst.go.jp

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease=ml.nims.go.jp
(Please change "=" to "@")

Public Relations Office

School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Tel: +81-3-5841-1790, Fax: +81-3-5841-0529
Email: kouhou@pr.t.u-tokyo.ac.jp

Public Relations Office

Graduate School of Frontier Sciences
The University of Tokyo
Tel: +81-4-7136-5450
Email: taguchi.yumie@edu.k.u-tokyo.ac.jp

Public Relations Office

Niigata University
2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
Tel: +81-25-262-7000, Fax: +81-25-262-6539
E-mail: pr-office@adm.niigata-u.ac.jp

Public Relations Office

RIKEN
Tel: +81-48-467-9272, Fax: +81-48-462-4715
Email: ex-press@riken.jp

Public Relations Division

Japan Science and Technology Agency
5-3 Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan
Tel: +81-3-5214-8404, Fax: +81-3-5214-8432
Email: jstkoho@jst.go.jp

Media Contact

Yasufumi Nakamichi
NAKAMICHI.Yasufumi@nims.go.jp
81-298-592-105

http://www.nims.go.jp/eng/index.html 

Yasufumi Nakamichi | EurekAlert!
Further information:
https://www.nims.go.jp/eng/news/press/2019/01/201901210.html
http://dx.doi.org/10.1021/acscentsci.8b00802

More articles from Materials Sciences:

nachricht Looking at linkers helps to join the dots
10.07.2020 | King Abdullah University of Science & Technology (KAUST)

nachricht Goodbye Absorbers: High-Precision Laser Welding of Plastics
10.07.2020 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>