Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cost-Efficient Testing Methods for XXL Rotor Blades

11.02.2019

Experimental testing should remain economically viable for manufacturers despite the increasing lengths of rotor blades - either in the form of full-scale blade testing or the testing of segment or blade components. Fraunhofer IWES received funding to the tune of around € 12 million for the `Future Concept Operational Stability Rotor Blades Phase II` project. The scientists develop and test out new methods for the evaluation of modern rotor blades measuring up to 115 meters in length. To this end, a new test bench is set to be constructed in Bremerhaven as of the end of 2019. It encompasses a very large test bed for full-scale blade testing and benches for segment and component tests.

Actual developments have now exceeded the specialists’ expectations: When Fraunhofer IWES opened the first rotor blade testing hall with its 70-meter test bed back in 2009, the maximum length of a rotor blade was just 62.5 meters. This was joined by a second hall in 2011, allowing testing of blades measuring up to 90 meters.


Visualization of project activities: Segment, section, and component testing

Fraunhofer IWES

However, blades measuring 100 meters are now already entering their respective testing phases, and these cannot currently be tested at Fraunhofer IWES. But this is going to change in the foreseeable future: Ground will be broken on the new test bench in Bremerhaven by the end of the year, and the facility is expected to start operation in 2021.

The core of the planned test bench will be a new test block measuring 11x11 meters and with the option of being extended to suit higher blade lengths in future if and when required. Moreover, the test bench will comprise the possibility to offer component and segment testing – which is a novelty for the wind industry.

In addition to the higher loads encountered in full-scale blade testing, the duration of the test, indirectly related to the size, represents a further challenge. Moreover, it is not possible to assess all areas of the rotor blade in detail and model them with statistical reliability in full-scale blade testing.

Testing facilities for components and segments as well as the use of new methods can close this gap. They should provide more detailed information on critical rotor blade sections in this respect.

`Large independent test facilities are a major enabler for our upcoming developments of large offshore turbines. New concepts such as component testing and segment testing of blades are extremely interesting for us,` explains Flemming Kløcker Grove, Senior Project Manager at MHI Vestas Offshore Wind.

As the investigation of segments such as the trailing edge of a blade is more cost-effective than full-scale blade testing, it will be possible for manufacturers to perform a number of tests on one component in the future and increase the statistical relevance of the results. In addition, it is possible to induce and understand specific damage mechanisms.

`It’s not just about testing longer blades – we also want to test more intelligently and expand our position as a leading institute for rotor blade tests`, explained Steffen Czichon, Head of Fraunhofer´s Department for Rotor Blades.

The aim of the ´Future Concept Operational Stability Rotor Blades Phase II´ project is to ensure that experimental testing of very long rotor blades remains economically viable for manufacturers. New testing procedures for the investigation of segments and components will offer a better understanding of critical areas and thus increase the informative value of the tests considerably. This information can be employed to design rotor blades even more precisely in the future, thereby saving on both weight and costs.

Breakdown of funding for the project
“Future Concept Operational Stability Rotor Blades Phase II”:

Hall construction:
German Federal Ministry of Education and Research (BMBF) and the State of Bremen/ERDF, € 3.4 million altogether

Test bench construction:
German Federal Ministry for Economic Affairs and Energy (BMWi), €8 million

Method development work packet – State of Bremen/ERDF: € 253,000

Wissenschaftliche Ansprechpartner:

Dipl.-Ing. Moritz Bätge, moritz.baetge@iwes.fraunhofer.de

Originalpublikation:

www.iwes.fraunhofer.de/en

Britta Rollert | Fraunhofer-Institut für Windenergiesysteme IWES

Further reports about: Fraunhofer-Institut IWES Rotor foreseeable future rotor blade test facilities

More articles from Materials Sciences:

nachricht Scientists' design discovery doubles conductivity of indium oxide transparent coatings
18.09.2019 | University of Liverpool

nachricht Heat shields for economical aircrafts
18.09.2019 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>