Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool it, quick: Rapid cooling leads to stronger alloys

10.07.2013
Researchers reveal a new technique to produce high strength metallic alloys, at a lower cost using less energy

A team of researchers from the University of Rostock in Germany has developed a new way to rapidly produce high strength metallic alloys, at a lower cost using less energy than before. It's expected that this breakthrough will profoundly change how we produce components used in a diverse range of applications; including transport and medical devices.

The research, which appears in the latest issue of the open access journal Materials Today, reports on the first Spark Plasma Sintering (SPS) system with an integrated gas quenching mechanism, capable of alternating the phase compositions and retaining the smallest grain features inside a structured metallic alloy.

SPS is a technique used to fuse fine powders into a dense solid material, by placing powder into a mold (or die) and simultaneously applying pulses of electric current and mechanical pressure to it. By varying SPS cooling rates, it is possible to control the phase and grain sizes in a material, and so, to tune its mechanical properties. In their study, the team of researchers led by Dr. Eberhard Burkel, a Professor of Physics of New Materials, demonstrated that rapidly cooling a material directly after SPS fabrication can produce a material with enhanced hardness, strength and ductility.

The new rapid cooling SPS system is based on a commercially available design, modified to include a series of gas inlet nozzles. After sintering, most SPS systems are left to cool naturally, or are flooded with argon gas. The system blasts nitrogen gas into the chamber at high speeds, rapidly cooling the material.

To demonstrate the utility of the system, Grade 5 Titanium (Ti-6Al-4V) – known as the "workhorse" of the titanium industry – was produced at different cooling rates. The most-rapidly cooled alloy was found to be up to 12% harder than the naturally-cooled alloy, and with an improved ductility up to 34±3%. Ti-6Al-4V is the most common titanium alloy in use worldwide, with applications in the aerospace, biomedical and marine industries.

In their article the researchers explain, "This high-ductile alloy offers unprecedented opportunities for the easy manufacturing of complex shapes for biomedical and new engineering applications."

First author of the study, Dr. Faming Zhang, said "The system will play a major role in the production of novel materials, from metals, alloys, metal matrix composites to micro- and nanostructured semiconductors."

Notes for Editors

This article is "The potential of rapid cooling spark plasma sintering for metallic materials" by Faming Zhang, Michael Reich, Olaf Kessler and Eberhard Burkel. It appears in Materials Today, Volume 16, Issue 5, Page 192-197 (2013) published by Elsevier. Full text of the article is freely available from here. Journalists wishing to interview the authors may contact Dr. Stewart Bland at +44 1865 84 3124 or s.bland@elsevier.com

About Materials Today

Materials Today is the Gateway to Materials Science and home of the Open Access Journal of the same name. The journal publishes peer-refereed review and research articles that assess the latest findings and examine the future challenges, as well as comment and opinion pieces from leading scientists discussing issues at the forefront of materials science. Visit http://www.materialstoday.com for access. Materials Today also publishes news, interviews, educational webinars, jobs and events; and provides free access to a range of specially selected articles from Elsevier's materials science journals. For more information on all aspects of Materials Today, including the editorial calendar and advertising options, contact the editor, Dr. Stewart Bland at s.bland@elsevier.com. Follow @MaterialsToday on Twitter; and on Facebook: http://www.facebook.com/elsevier.materials.

About Open Access Publishing at Elsevier

Elsevier has been providing open access publishing options since 2005. Today, researchers can choose to publish in over 1,500 hybrid journals as well as 39 full open access journals and these numbers will continue to grow rapidly. All of Elsevier's open access publications have been peer reviewed, ensuring that the broader community not only reads the latest research but that it is factual, original and of the highest quality and ethical standards. For more information about Elsevier's open access program, visit http://www.elsevier.com/openaccess

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Stewart Bland | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>