Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concentrated Competencies for Non-Metals

08.11.2010
Dr. Uwe Stute is head of the new Department of Technologies for Non-Metals at the Laser Zentrum Hannover e.V. (LZH, which focuses on the thematic fields of glass, photovoltaics and composite materials.

The new Department of Technologies for Non-Metals at the Laser Zentrum Hannover e.V. (LZH) focuses on the thematic fields of glass, photovoltaics and composite materials. From basic research projects to making prototypes, this department concentrates on specific process chain solutions for industrial manufacturing.

Whether in glass processing, for the manufacturing of solar collectors, or for processing fiber-reinforced plastics, in comparison to conventional methods, the use of lasers can significantly increase quality and productivity, or even make completely new processing methods possible. For example, controlled energy input can avoid damage from thermal effects in glass components. Composites also place complex requirements on processing, due to the special characteristics of the carbon fibers.

Material damage and high wear rates for tooling composite materials can be significantly reduced using laser technology instead of the classical material removal methods. And in the field of photovoltaics, significantly higher effectivity rates for solar cells can be achieved by using selective doping, for example, which is impossible without laser technology.

By creating a new department for non-metals, the LZH would like to make a substantial contribution to innovative developments in the fields of energy generation and resource conservation. The main goals of this department include not only precise micro-machining, but also highly productive throughput optimization of large areas. The tool "laser" must be optimized in order to structure, cut, form or weld the different non-metal materials, and the laser must be integrated into complex production and manufacturing processes.

Dr. Uwe Stute is head of the new department. He has returned to the LZH after three years in industrial as a branch manager for photovoltaics. Before he started working for the firm Trumpf Laser, he was head of the Department of Production and System Technology at the LZH, from 2004 to 2008. He is excited about his return to the Hannoverian research center. "I think it is extremely interesting", he says, "to be able to work on laser processes in areas which are presently undergoing major developments. Laser technology has an enormous potential in this field."

Stute, who has a doctor's degree in physics, states that the most important current research goals of his department are to optimize glass-metal/glass-glass welding for the production of solar collectors, open new production possibilities in the field of photovoltaics using "cold" laser processing, and automating laser tooling of composite materials.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
http://www.lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at www.lzh.de under "publications/press releases"

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Materials Sciences:

nachricht Research shows black plastics could create renewable energy
17.07.2019 | Swansea University

nachricht A new material for the battery of the future, made in UCLouvain
17.07.2019 | Université catholique de Louvain

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>