Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cat litter to become an edible product?

13.07.2011
Sepiolites characterized for first time paving way to synthesis

Sepiolite is a lightweight porous mineral used in cat litter and other applications. The extraordinary properties of this clay make it a highly sought after mineral, despite its scarcity in the Earth's crust: only a few mines worldwide extract it, several of them clustered near Madrid in Spain, the world's biggest exporter of this material.

Sepiolite has been known since Roman times when it was used to filter and purify wine, but our understanding at the atomic scale of how these tiny crystals absorb enormous amounts of liquid has remained elusive until now. A team of scientists from Spain and France has obtained for the first time single-crystal X-ray diffraction images of sepiolite, opening the path to industrial synthesis and further improvement of its properties. The results will be published in the October 2011 issue of the journal American Mineralogist.

The team included scientists from the Universities of Madrid and Salamanca in Spain, of the Institut Laue-Langevin (ILL), the European Synchrotron Radiation Facility (ESRF), and the Spanish CRG Beamline at the ESRF (SpLine), all in Grenoble (France).

No other mineral is known to absorb more water or other liquids as efficiently as sepiolites. The reasons are its structural nanoporosity due to tunnels in the crystals, and the fact that the elongated, needle-shaped sepiolite crystals pack very loosely into a lightweight porous material. The surface area ranges between 75 and 400 m2/g, meaning that 20g of mineral have an internal surface equivalent to that of a football court. This is why sepiolite can absorb 2.5 times its weight in water. The tunnels in the crystal structure along with the empty space between the needles form a capillary network through which liquids can easily flow deep inside the bulk where the molecules attach to the surface of the crystals.
The tiny size of these crystals—they measure a few micrometres in length and as little as some dozen atoms across—has been the main obstacle to their being studied with single-crystal diffraction techniques. For this experiment, the scientists collected samples of sepiolite fibres from twenty different deposits around the world. These fibres, each made of many crystals, were first imaged with electron-microscopy and then studied using X-ray powder diffraction.

However, the most accurate technique to resolve the three-dimensional structure of a crystal is single-crystal diffraction with either X-rays or electrons as probe. "To study very small crystals, the ESRF uses an X-ray beam with just 2 by 5 micrometres cross section. In the end, we collected X-ray diffraction data for two fibres", says Manuel Sanchez del Rio from the ESRF, "but the data were not easy to interpret, and needed extensive computer simulations to confirm and refine the information gathered by electron diffraction experiments done in parallel at the University Complutense of Madrid".

The wide variety of sepiolites studied is now enabling the team to correlate between the physical and chemical properties of a given type with its atomic structure. "Today, no synthetic clay surpasses natural sepiolite. This is about to change as our understanding of their atomic structure will guide the synthesis of sepiolites from other, more abundant clay minerals and the design of completely new materials for use in catalysis and batteries", says Mercedes Suárez from the University of Salamanca.

"The future of sepiolites in the household is outside the litterbox. Already today, they absorb liquid spillages and odours and stabilise aqueous products like paints, resins and inks. In synthetic form, they could bind food products and stabilise drugs, extending their shelf life and making sepiolite an edible product", concludes Manuel Sanchez del Rio.

Reference: Manuel Sanchez del Rio, Emilia Garcia-Romero, Mercedes Suarez, Ivan da Silva, Luis Fuentes Montero, and Gema Martinez-Criado. Variability in sepiolite: Diffraction studies. American Mineralogist (in press). DOI : 10.2138/am.2011.3761.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Materials Sciences:

nachricht In borophene, boundaries are no barrier
17.07.2018 | Rice University

nachricht Research finds new molecular structures in boron-based nanoclusters
13.07.2018 | Brown University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>