Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A plethora of states in magic-angle graphene

04.11.2019

Last year, graphene made another major splash in the headlines when scientists discovered that by simply rotating two layers of this material one on top of the other, it could behave like a superconductor where electrical currents can flow without resistance. This new phase of matter was seen to appear only when the two graphene layers were twisted between each other at an angle of 1.1º (no more and no less) - the so-called magic angle, and was always accompanied by enigmatic correlated insulator phases, similar to what is observed in mysterious cuprate high-temperature superconductors.

Now, researchers from ICFO in Barcelona have succeeded in vastly improving the device quality of this setup, and in doing so, have stumbled upon something even bigger and totally unexpected.


Close-up of the device placed onto the piece that later is adjusted to the experimental setup ©ICFO

Credit: ICFO

They were able to observe a zoo of previously unobserved superconducting and correlated states, in addition to an entirely new set of magnetic and topological states, opening a completely new realm of richer physics.

Room temperature superconductivity is the key to many technological goals such as efficient power transmission, frictionless trains, or even quantum computers, among others. When discovered more than 100 years ago, superconductivity was only plausible in materials cooled down to temperatures close to absolute zero.

Then, in the late 80's, scientists discovered high temperature superconductors by using ceramic materials called cuprates. In spite of the difficulty of building superconductors and the need to apply extreme conditions (very strong magnetic fields) to study the material, the field took off as something of a holy grail among scientists based on this advance. Since last year, the excitement around this field

has increased. The double mono-layers of carbon have captivated researchers because, in contrast to cuprates, their structural simplicity has become an excellent platform to explore the complex physics of superconductivity.

The new study recently published in Nature was carried out by ICFO researchers Xiaobo Lu, Petr Stepanov, Mohammed Ali Aamir, Ipsita Das, led by ICFO Prof. Dmitri Efetov, with support from ICFO Prof. Adrian Bachtold's research lab, and in collaboration with an interdisciplinary group from UT Austin, the Chinese Academy of Sciences, and the National Institute of Materials Science of Japan. In their experiment, using a "tear and stack" van der Waals assembly technique, the scientists at ICFO were able to engineer two stacked monolayers of graphene, rotated by only 1.1º - the magic angle.

They then used a mechanical cleaning process to squeeze out impurities and to release local strain between the layers. In doing this, they were able to obtain extremely clean twisted graphene bilayers with reduced disorder, resolving a multitude of fragile interaction effects.

By changing the electrical charge carrier density within the device with a nearby capacitor, they then saw that the material could be tuned from behaving as an insulator, to behaving as a superconductor, or even an exotic orbital magnet with non-trivial topological texture - a phase never observed before. What is even more astounding is the fact that the device entered a superconducting state at the lowest carrier densities ever reported for any superconductor, a completely new breakthrough in the field.

Xiaobo Lu, first author of the study, thrilled with the results, says "To our surprise, we observed that the system seemed to be competing between many novel states. By tuning the carrier density within the lowest two flat moiré bands, the system showed correlated states and superconductivity alternately, together with exotic magnetism and band topology. We also noted that these states were very sensitive to the quality of the device, i.e. accuracy and homogeneity of the twist angle between two sheets of graphene layers."

Last but not least, in this experiment, the researchers were also able to increase the superconducting transition temperature to above 3 kelvin, reaching record values which are twice as high as previously reported studies for magic-angle-graphene devices.

As ICFO Prof. Dmitri Efetov comments, "we never expected to see so many different states by just tuning the electronic gate. This was totally unexpected. For the first time we are able to delve into the microscopic world and manipulate the systems to see what happens in order to start understanding and finding models that can explain it."

What is exceptional about this approach is that graphene, a material that is typically poor on strongly interacting electron phenomena, now has been the enabling tool providing access to this complex and exceptionally rich physics. So far, there is no theory that can explain the superconductivity in magic angle graphene at the microscopic level, however with this new discovery, it is clear that a new chance to unveil its origin has emerged.

###

Reference: DOI: 10.1038/s41586-019-1695-0, https://www.nature.com/articles/s41586-019-1695-0

ABOUT ICFO

ICFO - The Institute of Photonic Sciences (http://www.icfo.eu) was founded in 2002 by the Government of Catalonia and the Universitat Politècnica de Catalunya (UPC), both of which are members of its board of trustees along with the Cellex and Mir-Puig Foundations, philanthropic entities that have played a critical role in the advancement of the institute since 2007. Located in the Mediterranean Technology Park in the metropolitan area of Barcelona, the institute currently hosts 400 people, organized in 26 research groups in 60 state-of-the-art research laboratories. Research lines encompass diverse areas in which photonics plays a decisive role, with an emphasis on basic and applied themes relevant to medicine and biology, advanced imaging techniques, information technologies, a range of environmental sensors, tunable and ultra-fast lasers, quantum science, photovoltaics and the properties and applications of nano-materials such as graphene, among others. In addition to two state awarded Severo Ochoa accreditations of excellence, ICFOnians have been awarded 15 ICREA Professorships and 35 European Research Council grants. ICFO participates actively in the European Technological Platform Photonics21 and is also very proactive in fostering entrepreneurial activities, spin-off creation, and creating collaborations and links between industry and ICFO researchers. To date, ICFO has helped create 7 start-up companies.

Video link: https://vimeo.com/358814551/54a92c5f21

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.eu
0034-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

Further reports about: ICFO Superconductors graphene layers magic angle microscopic superconductivity

More articles from Materials Sciences:

nachricht Theoretical tubulanes inspire ultrahard polymers
14.11.2019 | Rice University

nachricht New spin directions in pyrite an encouraging sign for future spintronics
14.11.2019 | ARC Centre of Excellence in Future Low-Energy Electronics Technologies

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>