Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D printing of patterned membranes opens door to rapid advances in membrane technology

03.06.2016

A new type of 3-D printing will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance, according to Penn State researchers.

Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most of these membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer.


Patterned membranes were created by 3-D printing.

Credit: Hickner Group/Penn State

However, recent work has shown that by creating 3-D patterns on top of the 2-D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications.

Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type.

"We thought if we could use 3-D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly," says Michael Hickner, associate professor of materials science and engineering, Penn State.

In a paper published online today in the American Chemical Society's journal ACS Applied Materials and Interfaces, Hickner's team describes the development of a custom 3-D photolithographic printing process similar in concept to a current 3-D process called stereolithography.

The team developed a photocurable mixture of ionic polymers and exposed the mixture under a light projector to harden the base layer. They then added more polymer to the base layer and projected a pattern on the new material to selectively harden the surface. The surface pattern increases the conductivity of the membrane by as much as a factor of two or three.

"Membranes act like a resistor in a battery or fuel cell," says Hickner, who is also a member of the Materials Research Institute. "If you can lower the resistance by a factor of two or three, you've really got something useful."

The paper's lead author, Jiho Seo, a Ph.D. candidate in materials science and engineering , added, "While surface-patterned membranes have been studied previously, this is the first 3-D printed example of these structures and the first model that really explains the resistance decrease in a quantitative way.

A simple parallel resistance model describes the effect of the pattern on lowering the resistance of these new membranes. This insight gives us a design tool to continue to innovate and create new patterns for further improvements along with changing the intrinsic chemistry of the material."

The team will continue to optimize the geometry and chemistry of the membranes they print, as well as learn to print new materials, both for membranes and beyond, that have never been printed heretofore.

"We want to bridge the fundamental chemistry and materials science that we do with the engineering and rapid design iterations that the 3-D printing industry is really good at," Hickner concludes.

###

In addition to Seo and Hickner, Douglas Kushner, Ph.D. student in materials science and engineering, contributed to the paper, titled "3-D Printing of Micro-patterned Anion Exchange Membranes."

Support for the photolithography system was provided by Penn State Department of Materials Science and Engineering. The Materials Research Institute and the Penn State Institutes of Energy and the Environment provided infrastructure support.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern
20.07.2018 | Princeton University

nachricht Relax, just break it
20.07.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>