Exploiting Nature’s Weapons in the Fight Against Diabetes

Scientists at the University of Ulster are harnessing molecules produced naturally in the body to tackle one of the world’s major health problems – diabetes.

Their novel approach involves bioengineering gut peptides – molecules produced in the human intestine and released in response to feeding – to prolong their duration of action and, therefore, make them work more effectively.

The research by the internationally-recognised Diabetes Research Group at the University’s Coleraine campus could lead to the development of new therapies to combat Type 2 diabetes.

Findings of the Group’s research were presented recently to the Diabetes UK Annual Professional Conference in England.

In essence, the Group is exploring ways to make new therapies based on the architecture of gut peptide molecules. Using bioengineering technologies the scientists are able to produce long-acting molecules, which are not quickly degraded in the circulation, giving them more time to perform their tasks which include stimulation of insulin secretion and glucose metabolism as well as suppression of appetite.

The anticipated outcome is that these new bioengineered molecules will lower the blood glucose levels – the desired effect of any anti-diabetic drug.

Dr Victor Gault, a senior member of the Diabetes Research Group, said: “There are more than 150m reported cases of diabetes worldwide and, potentially, an equal number who remain undiagnosed. The incidence of diabetes is set to increase to 220m by 2010 with a predicted doubling in the number of reported cases within 20 years. In the US alone, the direct cost of treatment is more than $44bn, prompting a concerted research effort to find new ways to treat, cure and even prevent diabetes.

“Our research highlights the fact that perhaps nature knows best when it comes to regulating human metabolism and overcoming progressive disease processes.

“The onset and progression of Type 2 diabetes is closely associated with the increasing sedentary lifestyle of modern Western society which largely accounts for the huge rise in the incidence of obesity. The diverse range of important biological actions would support the view that bioengineered peptides may be particularly useful in the treatment of obesity-related diabetes.

“Traditionally therapies for Type 2 diabetes have focussed on single drug targets. In the future our bioengineered peptides could be used alone or together with insulin or other established anti-diabetic drugs, thus increasing the therapeutic arsenal of agents that can be used to combat diabetes”, Dr Gault added.

One of the bonuses of using natural molecules lies in the fact that they are generally better tolerated by the body than synthetically manufactured therapeutic agents.

Media Contact

David Young University of Ulster

Alle Nachrichten aus der Kategorie: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Microscopy beyond the resolution limit

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages…

Material found in house paint may spur technology revolution

Sandia developed new device to more efficiently process information. The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back…

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship

Nearly every organism hosts a collection of symbiotic microbes–a microbiome. It is now recognized that microbiomes are major drivers of health in all animals, including humans, and that these symbiotic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close