Newborn Heart Muscle Can Grow Back by Itself

Researchers, working with mice, found that a portion of the heart removed during the first week after birth grew back wholly and correctly – as if nothing had happened.

“This is an important step in our search for a cure for heart disease, the No. 1 killer in the developed world,” said Dr. Hesham Sadek, assistant professor of internal medicine and senior author of the study available online in the Feb. 25 issue of Science. “We found that the heart of newborn mammals can fix itself; it just forgets how as it gets older. The challenge now is to find a way to remind the adult heart how to fix itself again.”

Previous research has demonstrated that the lower organisms, like some fish and amphibians, that can regrow fins and tails, can also regrow portions of their hearts after injury.

“In contrast, the hearts of adult mammals lack the ability to regrow lost or damaged tissue, and as a result, when the heart is injured, for example after a heart attack, it gets weaker, which eventually leads to heart failure,” Dr. Sadek said.

The researchers found that within three weeks of removing 15 percent of the newborn mouse heart, the heart was able to completely grow back the lost tissue, and as a result looked and functioned just like a normal heart. The researchers believe that uninjured beating heart cells, called cardiomyocytes, are a major source of the new cells. They stop beating long enough to divide and provide the heart with fresh cardiomyocytes.

Dr. Eric Olson, chairman of molecular biology and co-senior author of the study, said that this work is fascinating.

“The inability of the adult heart to regenerate following injury represents a major barrier in cardiovascular medicine,” said Dr. Olson, who directs the Nancy B. and Jake L. Hamon Center for Basic Research in Cancer and the Nearburg Family Center for Basic and Clinical Research in Pediatric Oncology. “This work demonstrates that cardiac regeneration is possible in the mammalian heart during a window of time after birth, but this regenerative ability is then lost. Armed with this knowledge, we can next work to discover methods to reawaken cardiac regeneration in adulthood.”

The next step, the researchers said, is to study this brief window when the heart is still capable of regeneration, and to find out how, and why, the heart “turns off” this remarkable ability to regenerate as it grows older.

Other UT Southwestern researchers involved in the study were Dr. Enzo Porrello, postdoctoral research fellow in molecular biology and the paper’s lead author; Ahmed Mahmoud, graduate research assistant in internal medicine; Emma Simpson, research assistant in pathology; Dr. Joseph Hill, chief of cardiology; and Dr. James Richardson, professor of pathology and molecular biology.

The study was funded by the National Health and Medical Research Council, the National Heart Foundation of Australia and the American Heart Association.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

Media Contact

LaKisha Ladson Newswise Science News

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors